Skip to main content

Advertisement

Log in

Do Anti-angiogenic or Angiogenic Factors Contribute to the Protection of Birth Weight at High Altitude Afforded by Andean Ancestry?

  • Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Objective

This prospective study was designed to determine whether variation in angiogenic (placental growth factor [PlGF]) and/or anti-angiogenic (soluble fms-like tyrosine kinase [sFlt-1]) factors contribute to the protective effect of highland ancestry (Andean) from altitude-associated reductions in fetal growth.

Study design

Plasma sFlt-1 and PlGF levels, uterine artery (UA) blood flow, and fetal biometry were determined in low-altitude (400 m; Andean n = 27, European n = 28) and high-altitude (3600 m; Andean n = 51, European n = 44) residents during pregnancy (20 and 36 weeks) and 4 months postpartum.

Results

High-altitude decreased sFlt-1 levels in both groups, Andeans had lower sFlt-1, comparable PlGF, lower sFlt-1/PlGF ratios, and higher UA blood flow throughout pregnancy relative to Europeans. Altitude decreased birth weight in Europeans but not Andeans. In high-altitude Europeans sFlt-1/PlGF and sFlt-1 levels were negatively associated with UA diameter and birth weight, respectively.

Conclusions

Lower sFlt-1 and sFlt-1/PLGF ratio may contribute to or result from variations in maternal vascular adaptation to pregnancy between Andean and Europeans at high altitude. Subsequently, these effects could potentially influence ancestry-associated differences in birth weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zygmunt M, Herr F, Munstedt K, Lang U, Liang OD. Angiogenesis and vasculogenesis in pregnancy. Eur J Obstet Gynecol Reprod Biol. 2003;110(suppl 1):S10–S18.

    Article  CAS  PubMed  Google Scholar 

  2. Cross JC, Hemberger M, Lu Y, et al. Trophoblast functions, angiogenesis and remodeling of the maternal vasculature in the placenta. Mol Cell Endocrinol. 2002;187(1–2):207–212.

    Article  CAS  PubMed  Google Scholar 

  3. Osol G, Celia G, Gokina N, et al. Placental growth factor is a potent vasodilator of rat and human resistance arteries. Am J Physiol Heart Circ Physiol. 2008;294(3):H1381–H1387.

    Article  CAS  PubMed  Google Scholar 

  4. Charnock-Jones DS, Kaufmann P, Mayhew TM. Aspects of human fetoplacental vasculogenesis and angiogenesis. I. Molecular regulation. Placenta. 2004;25(2–3):103–113.

    Article  CAS  PubMed  Google Scholar 

  5. Zamudio S, Palmer SK, Droma T, Stamm E, Coffin C, Moore LG. Effect of altitude on uterine artery blood flow during normal pregnancy. J Appl Physiol. 1995;79(1):7–14.

    Article  CAS  PubMed  Google Scholar 

  6. Julian CG, Galan HL, Wilson MJ, et al. Lower uterine artery blood flow and higher endothelin relative to nitric oxide metabolite levels are associated with reductions in birth weight at high altitude. Am J Physiol Regul Integr Comp Physiol. 2008;295(3): R906–R915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Krampl E, Lees C, Bland JM, Espinoza Dorado J, Moscoso G, Campbell S. Fetal biometry at 4300 m compared to sea level in Peru. Ultrasound Obstet Gynecol. 2000;16(1):9–18.

    Article  CAS  PubMed  Google Scholar 

  8. Keyes LE, Armaza JF, Niermeyer S, Vargas E, Young DA, Moore LG. Intrauterine growth restriction, preeclampsia, and intrauterine mortality at high altitude in Bolivia. Pediatr Res. 2003;54(1):20–25.

    Article  PubMed  Google Scholar 

  9. Julian CG, Vargas E, Armaza JF, Wilson MJ, Niermeyer S, Moore LG. High-altitude ancestry protects against hypoxia-associated reductions in fetal growth. Arch Dis Child Fetal Neonatal Ed. 2007;92(5):F372–F377.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Palmer SK, Moore LG, Young D, Cregger B, Berman JC, Zamudio S. Altered blood pressure course during normal pregnancy and increased preeclampsia at high altitude (3100 m) in Colorado. Am J Obstet Gynecol. 1999;180(5):1161–1168.

    Article  CAS  PubMed  Google Scholar 

  11. Moore LG. Fetal growth restriction and maternal oxygen transport during high altitude pregnancy. High Alt Med Biol. 2003;4(2): 141–156.

    Article  PubMed  Google Scholar 

  12. Moore LG, Shriver M, Bemis L, et al. Maternal adaptation to high-altitude pregnancy: an experiment of nature—a review. Placenta. 2004;25(suppl A):S60–S71.

    Article  CAS  PubMed  Google Scholar 

  13. Wilson MJ, Lopez M, Vargas M, et al. Greater uterine artery blood flow during pregnancy in multigenerational (Andean) than shorter-term (European) high-altitude residents. Am J Physiol Regul Integr Comp Physiol. 2007;293(3): R1313–R1324.

    Article  CAS  PubMed  Google Scholar 

  14. Zamudio S, Postigo L, Illsley NP, et al. Maternal oxygen delivery is not related to altitude- and ancestry-associated differences in human fetal growth. J Physiol. 2007;582(pt 2):883–895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Julian CG, Wilson MJ, Lopez M, et al. Augmented uterine artery blood flow and oxygen delivery protect Andeans from altitude-associated reductions in fetal growth. Am J Physiol Regul Integr Comp Physiol. 2009;296(5):R1564–1575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Szukiewicz D, Szewczyk G, Watroba M, Kurowska E, Maslinski S. Isolated placental vessel response to vascular endothelial growth factor and placenta growth factor in normal and growth-restricted pregnancy. Gynecol Obstet Invest. 2005;59(2):102–107.

    Article  CAS  PubMed  Google Scholar 

  17. Cooper B. Mechanism of vasodilation by placental growth factor (PIGF) in the uterine circulation. J Soc Gynecol Invest. 2005;12(2).

  18. Bulla R, Bossi F, Radillo O, de Seta F, Tedesco F. Placental trophoblast and endothelial cells as target of maternal immune response. Autoimmunity. 2003;36(1):11–18.

    Article  CAS  PubMed  Google Scholar 

  19. Teran E, Escudero C, Moya W, Flores M, Vallance P, Lopez-Jaramillo P. Elevated C-reactive protein and pro-inflammatory cytokines in Andean women with pre-eclampsia. Int J Gynaecol Obstet. 2001;75(3):243–249.

    Article  CAS  PubMed  Google Scholar 

  20. Nagamatsu T, Fujii T, Kusumi M, et al. Cytotrophoblasts upregulate soluble fms-like tyrosine kinase-1 expression under reduced oxygen: an implication for the placental vascular development and the pathophysiology of preeclampsia. Endocrinology. 2004;145(11):4838–4845.

    Article  CAS  PubMed  Google Scholar 

  21. Levine RJ, Maynard SE, Qian C, et al. Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med. 2004;350(7): 672–683.

    Article  CAS  PubMed  Google Scholar 

  22. Romero R, Nien JK, Espinoza J, et al. A longitudinal study of angiogenic (placental growth factor) and anti-angiogenic (soluble endoglin and soluble vascular endothelial growth factor receptor-1) factors in normal pregnancy and patients destined to develop preeclampsia and deliver a small for gestational age neonate. J Matern Fetal Neonatal Med. 2008;21(1):9–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Smith GC, Crossley JA, Aitken DA, et al. Circulating angiogenic factors in early pregnancy and the risk of preeclampsia, intrauterine growth restriction, spontaneous preterm birth, and stillbirth. Obstet Gynecol. 2007;109(6):1316–1324.

    Article  CAS  PubMed  Google Scholar 

  24. Ahmed A, Dunk C, Ahmad S, Khaliq A. Regulation of placental vascular endothelial growth factor (VEGF) and placenta growth factor (PIGF) and soluble Flt-1 by oxygen—a review. Placenta. 2000;21(suppl A):S16–S24.

    Article  PubMed  Google Scholar 

  25. Lash GE, Taylor CM, Trew AJ, et al. Vascular endothelial growth factor and placental growth factor release in cultured trophoblast cells under different oxygen tensions. Growth Factors. 2002;20(4):189–196.

    Article  CAS  PubMed  Google Scholar 

  26. Shriver MD, Kennedy GC, Parra EJ, et al. The genomic distribution of population substructure in four populations using 8,525 autosomal SNPs. Hum Genomics. 2004;1(4):274–286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bahtiyar MO, Buhimschi C, Ravishankar V, et al. Contrasting effects of chronic hypoxia and nitric oxide synthase inhibition on circulating angiogenic factors in a rat model of growth restriction. Am J Obstet Gynecol. 2007;196(1):72.e1–72.e6.

    Article  CAS  Google Scholar 

  28. Krauss T, Pauer HU, Augustin HG. Prospective analysis of placenta growth factor (PlGF) concentrations in the plasma of women with normal pregnancy and pregnancies complicated by preeclampsia. Hypertens Pregnancy. 2004;23(1):101–111.

    Article  CAS  PubMed  Google Scholar 

  29. Zamudio S. The placenta at high altitude. High Alt Med Biol. 2003;4(2):171–191.

    Article  PubMed  Google Scholar 

  30. Schlembach D, Wallner W, Sengenberger R, et al. Angiogenic growth factor levels in maternal and fetal blood: correlation with Doppler ultrasound parameters in pregnancies complicated by pre-eclampsia and intrauterine growth restriction. Ultrasound Obstet Gynecol. 2007;29(4):407–413.

    Article  CAS  PubMed  Google Scholar 

  31. Savvidou MD, Yu CK, Harland LC, Hingorani AD, Nicolaides KH. Maternal serum concentration of soluble fms-like tyrosine kinase 1 and vascular endothelial growth factor in women with abnormal uterine artery Doppler and in those with fetal growth restriction. Am J Obstet Gynecol. 2006;195(6):1668–1673.

    Article  CAS  PubMed  Google Scholar 

  32. Chaiworapongsa T, Espinoza J, Gotsch F, et al. The maternal plasma soluble vascular endothelial growth factor receptor-1 concentration is elevated in SGA and the magnitude of the increase relates to Doppler abnormalities in the maternal and fetal circulation. J Matern Fetal Neonatal Med. 2008;21(1): 25–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stepan H, Unversucht A, Wessel N, Faber R. Predictive value of maternal angiogenic factors in second trimester pregnancies with abnormal uterine perfusion. Hypertension. 2007;49(4): 818–824.

    Article  CAS  PubMed  Google Scholar 

  34. Shibuya M. Vascular endothelial growth factor receptor-1 (VEGFR-1/Flt-1): a dual regulator for angiogenesis. Angiogenesis. 2006;9(4):225–230; discussion 231.

    Article  CAS  PubMed  Google Scholar 

  35. Cao Y. Positive and negative modulation of angiogenesis by VEGFR1 ligands. Sci Signal. 2009;2(59):re1.

    Article  PubMed  Google Scholar 

  36. Nevo O, Soleymanlou N, Wu Y, et al. Increased expression of sFlt-1 in in vivo and in vitro models of human placental hypoxia is mediated by HIF-1. Am J Physiol Regul Integr Comp Physiol. 2006;291(4):R1085–R1093.

    Article  CAS  PubMed  Google Scholar 

  37. Li H, Gu B, Zhang Y, Lewis DF, Wang Y. Hypoxia-induced increase in soluble Flt-1 production correlates with enhanced oxidative stress in trophoblast cells from the human placenta. Placenta. 2005;26(2–3):210–217.

    Article  CAS  PubMed  Google Scholar 

  38. Rajakumar A, Michael HM, Rajakumar PA, et al. Extra-placental expression of vascular endothelial growth factor receptor-1, (Flt-1) and soluble Flt-1 (sFlt-1), by peripheral blood mononuclear cells (PBMCs) in normotensive and preeclamptic pregnant women. Placenta. 2005;26(7):563–573.

    Article  CAS  PubMed  Google Scholar 

  39. Facco M, Zilli C, Siviero M, et al. Modulation of immune response by the acute and chronic exposure to high altitude. Med Sci Sports Exerc. 2005;37(5):768–774.

    Article  CAS  PubMed  Google Scholar 

  40. Rana S, Karumanchi SA, Levine RJ, et al. Sequential changes in antiangiogenic factors in early pregnancy and risk of developing preeclampsia. Hypertension. 2007;50(1):137–142.

    Article  CAS  PubMed  Google Scholar 

  41. Ahmad S, Ahmed A. Elevated placental soluble vascular endothelial growth factor receptor-1 inhibits angiogenesis in preeclampsia. Circ Res. 2004;95(9):884–891.

    Article  CAS  PubMed  Google Scholar 

  42. Wallner W, Sengenberger R, Strick R, et al. Angiogenic growth factors in maternal and fetal serum in pregnancies complicated by intrauterine growth restriction. Clin Sci (Lond). 2007;112(1): 51–57.

    Article  CAS  Google Scholar 

  43. Levine RJ, Lam C, Qian C, et al. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med. 2006;355(10):992–1005.

    Article  CAS  PubMed  Google Scholar 

  44. Greer IA, Lyall F, Perera T, Boswell F, Macara LM. Increased concentrations of cytokines interleukin-6 and interleukin-1 receptor antagonist in plasma of women with preeclampsia: a mechanism for endothelial dysfunction? Obstet Gynecol. 1994;84(6):937–940.

    CAS  PubMed  Google Scholar 

  45. Laskowska M, Leszczynska-Gorzelak B, Laskowska K, Oleszczuk J. Evaluation of maternal and umbilical serum TNFalpha levels in preeclamptic pregnancies in the intrauterine normal and growth-restricted fetus. J Matern Fetal Neonatal Med. 2006;19(6):347–351.

    Article  CAS  PubMed  Google Scholar 

  46. Bartha JL, Romero-Carmona R, Comino-Delgado R. Inflammatory cytokines in intrauterine growth retardation. Acta Obstet Gynecol Scand. 2003;82(12):1099–1102.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Daniela Dávila MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dávila, R.D., Julian, C.G., Wilson, M.J. et al. Do Anti-angiogenic or Angiogenic Factors Contribute to the Protection of Birth Weight at High Altitude Afforded by Andean Ancestry?. Reprod. Sci. 17, 861–870 (2010). https://doi.org/10.1177/1933719110372418

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719110372418

Keywords

Navigation