Skip to main content

Advertisement

Log in

Ethinylestradio-Chlormadinone Acetate Combination for the Treatment of Hirsutism and Hormonal Alterations of Normal-Weight Women With Polycystic Ovary Syndrome: Evaluation of the Metabolic Impact

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

This is the first study evaluating the clinical, metabolic, and hormonal effects of the ethinylestradiol—chlormadinone acetate (EECMA) combination in hirsute women with polycystic ovary syndrome (PCOS). Ultrasonographic pelvic examination, hirsutism score, and hormone profile evaluation were performed at baseline and after 3 and 6 cycles of treatment. Oral glucose tolerance test, euglycemic—hyperinsulinemic clamp, and assessment of lipid profile were carried out at baseline and after 6 cycles of treatment. A significant improvement in hirsutism was evident at the end of treatment. From the third cycle onward, plasma levels of sex hormone binding globulin significantly increased when compared to baseline. Free androgen index, androstenedione, and 17-hydroxyprogesterone significantly decreased after 6 cycles. The treatment did not affect glucose and insulin homeostasis. Total cholesterol, triglycerides, and high-density lipoprotein (HDL) plasma levels remained unvaried, whereas low-density lipoprotein (LDL) concentrations showed a significant reduction. A significant increase in very-low-density lipoprotein (VLDL) levels was seen at the sixth cycle of therapy. In conclusion, EE-CMA combination ameliorates clinical and hormonal features of PCOS women, with no detrimental effects on glucose, insulin, and lipid metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Franks S. Polycystic ovary syndrome. New Engl J Med. 1995;333(13):853–861.

    Article  CAS  PubMed  Google Scholar 

  2. Falsetti L, Galbignani E. Long term treatment with the combination ethinyl-estradiol and cyproterone acetate in polycystic ovary syndrome. Contraception. 1990;42(6):611–619.

    Article  CAS  PubMed  Google Scholar 

  3. Olympia K, Gerard S. Conway. A systemic review of commonly used medical treatments for hirsutism in women. Clin Endocrinol. 2008;68(5):800–805.

    Article  CAS  Google Scholar 

  4. Krysiak R, Okopieñ B, Gdula-Dymek A, Herman ZS. Update on the management of polycystic ovary syndrome. Pharmacol Rep. 2006;58(5):614–625.

    CAS  PubMed  Google Scholar 

  5. Warren-Ulanch J, Arslanian S. Treatment of PCOS in adolescence. Best Pract Res Clin Endocrinol Metabol. 2006;20(2):311–330.

    Article  Google Scholar 

  6. Botwood N, Hamilton-Fairley D, Kiddy D, Robinson S, Franks S. Sex hormone-binding globulin and female reproductive function. J Steroid Biochem Mol Biol. 1995;53(1–6):529–531.

    Article  CAS  PubMed  Google Scholar 

  7. Toscano V, Balducci R, Bianchi P, Guglielmi R, Mangiantini A, Sciarra F. Steroidal and non-steroidal factors in plasma sex hormone binding globulin regulation. J Steroid Biochem Mol Biol. 1992;43(5):431–437.

    Article  CAS  PubMed  Google Scholar 

  8. WHO Collaborative Study of Cardiovascular Disease and Steroid Hormone Contraception. Acute myocardial infarction and combined oral contraceptives: results of international multicenter case-control study. Lancet. 1997;349(9060):1202–1209.

    Article  Google Scholar 

  9. Wild RA. Long-term health consequences of PCOS. Hum Reprod Update. 2002;8(3):231–241.

    Article  PubMed  Google Scholar 

  10. Worret I, Arp W, Zahradnik HP, Zahradnik HP, Andreas JO, Binder N. Acne resolution rates: results of a single-blind, randomized, controlled, parallel phase III trial with EE/CMA (Belara) and EE/LNG (Microgynon). Dermatology. 2001;203(1):38–44.

    Article  CAS  PubMed  Google Scholar 

  11. Schramm G, Steffens D. A 12-month evaluation of the CMA-containing oral contraceptive Belara: efficacy, tolerability and anti-androgenic properties. Contraception. 2003;67(4):305–312.

    Article  CAS  PubMed  Google Scholar 

  12. Heskamp ML, Schramm GA. Efficacy of the low-dose combined oral contraceptive chlormadinone acetate/ethinylestradiol: physical and emotional benefits. Contraception. 2010;81(1):49–56.

    Article  CAS  PubMed  Google Scholar 

  13. Druckmann R. Profile of the progesterone derivative chlormadinone acetate—pharmocodynamic properties and therapeutic applications. Contraception. 2009;79(4):272–281.

    Article  CAS  PubMed  Google Scholar 

  14. Bouchard P. Chlormadinone acetate (CMA) in oral contraception—a new opportunity. Eur J Contracept Reprod Health Care. 2005;10(suppl 1):7–11.

    Article  CAS  PubMed  Google Scholar 

  15. Plewig G, Cunliffe WJ, Binder N, Höschen K. Efficacy of an oral contraceptive containing EE 0.03 mg and CMA 2 mg (Belara) in moderate acne resolution: a randomized, double-blind, placebo-controlled Phase III trial. Contraception. 2009;80(1):25–33.

    Article  CAS  PubMed  Google Scholar 

  16. Carranza-Lira S, Magaña-Padilla NR. Ultrasonographic and lipid changes in polycystic ovary syndrome according to the type of treatment. Ginecol Obstet Mex. 2002;70(6):285–288.

    PubMed  Google Scholar 

  17. Carranza-Lira S, García-Hernández E, Baiza MR, Morán C. The relation of the gonadotrophin response to chlormadinone according to body weight in patients with amenorrhea due to polycystic ovarian syndrome. Eur J Obstet Gynecol Reprod Biol. 1996;66(2):161–164.

    Article  CAS  PubMed  Google Scholar 

  18. Azziz R. Definition and epidemiology of the polycystic ovary syndrome Contemporary Endocrinology: Androgen Excess Disorders in Women: Polycystic Ovary Syndrome and Other Disorders, Second Edition, 2006.

  19. The Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod. 2004;19(1):41–47.

    Article  Google Scholar 

  20. Fulghesu AM, Ciampelli M, Belosi C, et al. A new ultrasound criterion for the diagnosis of polycystic ovary syndrome: the ovarian stroma/total area ratio. Fertil Steril. 2001;76(2):326–331.

    Article  CAS  PubMed  Google Scholar 

  21. Van Hooff MH, Voorhorst FJ, et al. Endocrine features of polycystic ovary syndrome in a random population sample of 14–16 years old adolescents. Hum Reprod. 1999;14(9):2223–2229.

    Article  PubMed  Google Scholar 

  22. New MI, Lorenzen F, Lerner AJ, et al. Genotyping steroid 21-hydroxylase deficiency: hormonal reference data. J Clin Endocrinol Metab. 1983;57(2):320–326.

    Article  CAS  PubMed  Google Scholar 

  23. Ferriman D, Gallwey JD. Clinical assessment of body hair growth in women. J Clin Endocrinol Metab. 1961;21:1440–1447.

    Article  CAS  PubMed  Google Scholar 

  24. Faber OK, Christensen K, Kehelet H, Madsbad S, Binder C. Decreased insulin removal contributes to hyperinsulinemic in obesity. J Clin Endocrinol Metab. 1981;53(3):618–621.

    Article  CAS  PubMed  Google Scholar 

  25. De Fronzo JP, Tobin JD, Andrei R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol. 1979;237(3):E214–E223.

    Google Scholar 

  26. Bergman RN, Finegood DT, Ader M. Assessment of insulin sensitivity in vivo. Endocr Rev. 1985;6(1):45–86.

    Article  CAS  PubMed  Google Scholar 

  27. Ciampelli M, Fulghesu AM, Cucinelli F, et al. Impact of insulin and body mass index on metabolic and endocrine variables in polycystic ovary syndrome. Metabolism. 1999;48(2):167–172.

    Article  CAS  PubMed  Google Scholar 

  28. Rivera R, Yacobson I, Grimes D. The mechanism of action of hormonal contraceptives and intrauterine contraceptive devices. Am J Obstet Gynecol. 1999;181(5 Pt 1):1263–1269.

    Article  CAS  PubMed  Google Scholar 

  29. Crook D, Godsland I. Safety evaluation of modern oral contraceptives. Effects on lipoprotein and carbohydrate metabolism. Contraception. 1998;57(3):189–201.

    Article  CAS  PubMed  Google Scholar 

  30. De Pirro R, Fusco A, Lauro R, et al. Insulin receptors on monocytes and erythrocytes from obese patients. J Clin Endocrinol Metab. 1980;51(6):1437–1439.

    Article  PubMed  Google Scholar 

  31. Godsland IF, Walton C, Felton C, et al. Insulin resistance, secretion, and metabolism in users of oral contraceptives. J Clin Endocrinol Metab. 1992;74(1):64–70.

    CAS  PubMed  Google Scholar 

  32. Skouby SO, Endrikat J, Dusterberg B, et al. A 1-yr randomized study to evaluate the effects of a dose reduction in oral contraceptives on lipids and carbohydrate metabolism: 20 μg ethinyl estradiol combined with 100 μg levonorgesterel. Contraception. 2005;71(2):111–117.

    Article  CAS  PubMed  Google Scholar 

  33. Lopez LM, Grimes DA, Schulz KF. Steroidal contraceptives: effect on carbohydrate metabolism in women without diabetes mellitus. Cochrane Database Syst Rev. 2007;(2):CD006133.

  34. Lüdicke F, Gaspard UJ, Demeyer F, Scheen A, Lefebvre P. Randomized controlled study of the influence of two low estrogen dose oral contraceptives containing gestodene or desogestrel on carbohydrate metabolism. Contraception. 2002;66(6):411–415.

    Article  PubMed  Google Scholar 

  35. Polderman KH, Gooren LJG, Asscheman H, et al. Induction of insulin resistance by estrogens and androgens. J Clin Endocrinol Metab. 1994;79(1):265–271.

    CAS  PubMed  Google Scholar 

  36. Wild RA, Carmina E, Diamanti-Kandarakis E, Dokras A, et al. Assessment of cardiovascular risk and prevention of cardiovascular disease in women with the polycystic ovary syndrome: a consensus statement by the Androgen Excess and Polycystic Ovary Syndrome (AE-PCOS) Society. J Clin Endocrinol Metab. 2010 May; 95(5):2038–49.

    Article  CAS  PubMed  Google Scholar 

  37. Cagnacci A, Ferrari S, Tirelli A, et al. Insulin sensitivity and lipid metabolism with oral contraceptives containing chlormadinone acetate or desogestrel: a randomized trial. Contraception. 2009;79(2):111–116.

    Article  CAS  PubMed  Google Scholar 

  38. Winkler UH, Sudik R. The effects of two monophasic oral contraceptives containing 30 mcg of ethinyl estradiol and either 2 mg of chlormadinone acetate or 0.15 mg of desogestrel on lipid, hormone and metabolic parameters. Contraception. 2009;79(2):15–23.

    Article  CAS  PubMed  Google Scholar 

  39. Coenen C, Thomas C, Borm G, et al. Comparative evaluation of the androgenecity of four low-dose, fixed combination oral contraceptives. Int J Fertil. 1995;40(suppl 2):92–97.

    Google Scholar 

  40. Nessa A, Latif SA, Uddin M. Effects of low dose oral contraceptives on serum total cholesterol, TAG, HDL-C & LDL-C levels in contraceptive users. Mymensingh Med J. 2005;14(1):26–28.

    CAS  PubMed  Google Scholar 

  41. Kiran G, Kiran H, Ekerbicer HC, Aust NZ. Serum lipid and lipoprotein changes induced by preparations containing low-dose ethinylestradiol plus levonorgestrel. J Obstet Gynaecol. 2003;43(2):145–147.

    Google Scholar 

  42. Castelli WP. The new pathophysiology of coronary artery disease. Am J Cardiol. 1998;82(10B):60t–65t.

    Article  CAS  PubMed  Google Scholar 

  43. Sclavo M. Cardiovascular risk factors and prevention in women: similarities and differences. Ital Heart J. 2001;2(suppl 2):125–141.

    CAS  Google Scholar 

  44. Gruffat D, Durand D, Graulet B, Bauchart D. Regulation of VLDL synthesis and secretion in the liver. Reprod Nutr Dev. 1996;36(4):375–389. Review.

    Article  CAS  PubMed  Google Scholar 

  45. Wahl R, Walden C, Knopp R, et al. Effect of estrogen/progestin potency on lipid/lipoprotein cholesterol. N Engl J Med. 1993;308(15):862–867.

    Article  Google Scholar 

  46. Walsh BW, Sacks FM. Effects of low dose oral contraceptive on very low density lipoprotein metabolism. J. Clin Invest. 1993;91(5):2126–2132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sabatini R, Orsini G, Cagiano R, et al. Noncontraceptive benefits of two combined oral contraceptives with antiandrogenic properties among adolescents. Contraception. 2007;76(5):342–347.

    Article  CAS  PubMed  Google Scholar 

  48. Raudrant D, Rabe T. Progestogens with antiandrogenic properties. Drug. 2003;63(5):463–492.

    Article  CAS  Google Scholar 

  49. Térouanne B, Paris F, Servant N, Georget V, Sultan C. Evidence that chlormadinone acetate exhibits antiandrogenic activity in androgen-dependent cell line. Mol Cell Endocrinol. 2002;198(1–2):143–147.

    Article  PubMed  Google Scholar 

  50. Lucky AW, Henderson TA, Olson WH, et al. Effectiveness of norgestimate and ethinyl estradiol in treating moderate acne vulgaris. J Am Acad Dermatol. 1997;37(5 pt 1):746–754.

    Article  CAS  PubMed  Google Scholar 

  51. Kageyama Y, Kitahara S, Tsukamoto T, Tsujii T, Goto S, Oshima H. Chlormadinone acetate as a possible effecrive agent for congenital adrenal hyperplasia to suppress elevated ACTH and antagonize masculinization. Endocr J. 1995;42(4):505–508.

    Article  CAS  PubMed  Google Scholar 

  52. Murakoshi M, Ikeda R, Fukui N. The effects of chlormadinone acetate (CMA), antiandrogen, on the pituitary, testis, prostate and adrenal gland of the dog with spontaneous benign prostatic hyperplasia. J Toxicol Sci. 2001;26(3):119–127.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Guido MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guido, M., Romualdi, D., Campagna, G. et al. Ethinylestradio-Chlormadinone Acetate Combination for the Treatment of Hirsutism and Hormonal Alterations of Normal-Weight Women With Polycystic Ovary Syndrome: Evaluation of the Metabolic Impact. Reprod. Sci. 17, 767–775 (2010). https://doi.org/10.1177/1933719110371515

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719110371515

Keywords

Navigation