Skip to main content
Log in

Impact of 2 Doses of Clorgyline on the Rat Preimplantation Embryo Development and the Monoamine Levels in Urine

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

We have evaluated the impact of chronic administration of clorgyline, a potent monoamine oxidase A inhibitor and a former antidepressant, on the preimplantation embryo development in Wistar rats. Females were injected intraperitoneally daily for 30 days with saline (control animals), or with a low-dose clorgyline (LDC, 0.1 mg/kg per d) or with a high-dose clorgyline (HDC, 1 mg/kg per d). Embryos were isolated on day 5 of pregnancy and urine was collected by puncture of the urinary bladder. The number of embryos per female did not differ between experimental groups and control, but we have recorded a decreased number of embryos in HDC group compared to LDC (P < .05). We have found that LDC significantly reduced the presence of healthy embryos and increased the presence of the degenerated embryos (P < .001). The administration of the LDC resulted in the lowest cell number in blastocysts. We have observed significantly increased serotonin levels in HDC group compared to both control (P < .05) and LDC animals (P < .01). Norepinephrine (NE) levels in both experimental groups were significantly elevated compared to controls. Dopamine levels did not differ between groups (P > .05). We speculate that lesser negative effect of HDC compared to LDC on the preimplantation embryo development could be the consequence of the lower NE levels and/or elevated serotonin levels. Potential mechanisms mediating clorgyline-induced impaired preimplantation embryo development are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Singer TP, Ramsay RR. Monoamine oxidases: old friends hold many surprises. FASEB J. 1995;9(8):605–610.

    Article  CAS  PubMed  Google Scholar 

  2. Keung WM. Monoamine oxidase inhibitors. Expert Opin Ther Pat. 2002;12(12):1813–1829.

    Article  CAS  Google Scholar 

  3. Einarson A. The safety of psychotropic drug use during pregnancy: a review. MedGenMed. 2005;7(4):3.

    PubMed  Google Scholar 

  4. Mihalik J, Špakovská T, Prokopčáková L, Schmidtová K. Antagonistic effect of low deprenyl dose on the preimplantation embryo development in rat. Bratisl Lek Listy. 2008;109(4):151–154.

    CAS  PubMed  Google Scholar 

  5. Seymour CB, Mothersill C, Mooney R, Moriarty M, Tipton KF. Monoamine oxidase inhibitors l-deprenyl and clorgyline protect nonmalignant human cells from ionizing radiation and chemotherapy toxicity. Br J Cancer. 2003;89(10):1979–1986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhao H, Nolley R, Chen Z, Reese SW, Peehl DM. Inhibition of monoamine oxidase A promotes secretory differentiation in basal prostatic epithelial cells. Differentiation. 2008;76(7):820–830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Malorni W, Giammarioli AM, Matarrese P, et al. Protection against apoptosis by monoamine oxidase A inhibitors. FEBS Lett. 1998;426(1):155–159.

    Article  CAS  PubMed  Google Scholar 

  8. Kitanaka N, Kitanaka J, Watabe K, Takemura M. Low-dose pretreatment with clorgyline decreases the levels of 3-methoxy-4-hydroxyphenylglycol in the striatum and nucleus accumbens and attenuates methamphetamine-induced conditioned place preference in rats. Neuroscience. 2010;165(4):1370–1376.

    Article  CAS  PubMed  Google Scholar 

  9. Mihalik J, Rehák P, Koppel J. The influence of insulin on the in vitro development of mouse and bovine embryos. Physiol Res. 2000;49(3):347–354.

    CAS  PubMed  Google Scholar 

  10. Pampfer S, Vanderheyden I, Michiels B, DeHertogh R. Cell allocation to the inner cell mass and the trophectoderm in rat embryos during in vivo preimplantation development. Roux’s Arch Dev Biol. 1990;198(5):257–263.

    Article  Google Scholar 

  11. Spielmann H, Jacob-Mueller U, Beckord W. Immunosurgical studies on inner cell mass development in rat and mouse blastocysts before and during implantation in vitro. J Embryol Exp Morph. 1980;60:255–269.

    CAS  PubMed  Google Scholar 

  12. Kwong WY, Wild A, Roberts P, Willis AC, Fleming TP. Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development. 2000;127(19):4195–4202.

    CAS  PubMed  Google Scholar 

  13. Schneider HP, McCann SM. Mono- and indolamines and control of LH secretion. Endocrinology. 1970;86(5):1127–1133.

    Article  CAS  PubMed  Google Scholar 

  14. O’Steen WK. Serotonin suppression of luteinization in gonadotropin-treated, immature rats. Endocrinology. 1964;74(6):885–888.

    Article  PubMed  Google Scholar 

  15. Wilson CA, McDonald PG. Inhibitory effect of serotonin on ovulation in adult rats. J Endocrinol. 1974;60(2):253–260.

    Article  CAS  PubMed  Google Scholar 

  16. Blum I, Nessiel L, David A, et al. Plasma neurotransmitter profile during different phases of the ovulatory cycle. J Clin Endocrinol Metab. 1992;75(3):924–929.

    CAS  PubMed  Google Scholar 

  17. Terranova PF, Uilenbroek JT, Saville L, Horst D, Nakamura Y. Serotonin enhances oestradiol production by hamster preovulatory follicles in vitro: effects of experimentally induced atresia. J Endocrinol. 1990;125(3):433–438.

    Article  CAS  PubMed  Google Scholar 

  18. Bódis J, Török A, Tinneberg HR, Hanf V, Hamori M, Cledon P. Influence of serotonin on progesterone and estradiol secretion of cultured human granulose cells. Fertil Steril. 1990;57(5):1008–1011.

    Article  Google Scholar 

  19. Tanaka E, Baba N, Toshida K, Suzuki K. Serotonin stimulates steroidogenesis in rat preovulatory follicles: involment of 5-HT2 receptor. Life Sci. 1993;53(7):563–570.

    Article  CAS  PubMed  Google Scholar 

  20. Desjardins GC, Brawer JR, Beaudet A. Estradiol is selectively neurotoxic to hypothalamic β-endorphin neurons. Endocrinology. 1993;132(1):86–93.

    Article  CAS  PubMed  Google Scholar 

  21. Luza SM, Lizama L, Burgos RA, Lara HE. Hypothalamic changes in norepinephrine release in rats with estradiol valerate-induced polycystic ovaries. Biol Reprod. 1995;52(2):398–404.

    Article  CAS  PubMed  Google Scholar 

  22. Goodman RL, Robinson JE, Kendrick KM, Dyer RG. Is the inhibitory action of estradiol on luteinizing hormone pulse frequency in anestrous ewes mediated by noradrenergic neurons in the preoptic area? Neuroendocrinology. 1995;61(3):284–292.

    Article  CAS  PubMed  Google Scholar 

  23. Iľková G, Rehák P, Veselá J, et al. Serotonin localization and its functional significance during mouse preimplantation embryo development. Zygote. 2004;12(3):205–213.

    Article  CAS  Google Scholar 

  24. Barraclough CA. Neural control of the synthesis and release of luteinizing hormone-releasing hormone. Ciba Found Symp. 1992;168:233–246; discussion 246–251.

    CAS  PubMed  Google Scholar 

  25. Anselmo-Franci JA, Franci CR, Krulich L, Antunes-Rodrigues J, McCann SM. Locus coeruleus lesions decrease norepinephrine input into the medial preoptic area and medial basal hypothalamus and block the LH, FSH and prolactin preovulatory surge. Brain Res. 1997;767(2):289–299.

    Article  CAS  PubMed  Google Scholar 

  26. Itoh MT, Ishizuka B, Kuribayashi Y, Abe Y, Sumi Y. Noradrenaline concentrations in human preovulatory follicular fluid exceed those in peripheral plasma. Exp Clin Endocrinol Diabetes. 2000;108(8):506–509.

    Article  CAS  PubMed  Google Scholar 

  27. Bódis J, Hartmann G, Török A, et al. Relationship between the monoamine and gonadotropin content in follicular fluid of preovulatory graafian follicles after superovulation treatment. Exp Clin Endocrinol. 1993;101(3):178–182.

    Article  PubMed  Google Scholar 

  28. Ramos I, Cisint S, Crespo CA, Medina MF, Fernandez SN. Involvement of catecholamines in the regulation of oocyte maturation in frogs. Zygote. 2002;10(3):271–281.

    Article  CAS  PubMed  Google Scholar 

  29. Helm G, Owman CH, Rosengren E, Sjöberg NO. Regional and cyclic variations in catecholamine concentration of the human fallopian tube. Biol Reprod. 1982;26(4):553–558.

    Article  CAS  PubMed  Google Scholar 

  30. Kotwica G, Kurowicka B, Franczak A, et al. The concentrations of catecholamines and oxytocin receptors in the oviduct and its contractile activity in cows during the estrous cycle. Theriogenology. 2003;60(5):953–964.

    Article  CAS  PubMed  Google Scholar 

  31. Mihalik J, Kravčuková P, Špakovská T, Mareková M, Schmidtová K. Study of high deprenyl dose on the preimplantation embryo development and lymphocyte DNA in rat. Gen Physiol Biophys. 2008;27(2):121–126.

    CAS  PubMed  Google Scholar 

  32. Czerski A, Zawadzki W, Zawadzki M, Czerska Z. Influence of dopamine on rat uterine motility in vitro. Acta Vet Brno. 2005;74(1):9–15.

    Article  CAS  Google Scholar 

  33. Way AL, Killian GJ. Capacitation and induction of the acrosome reaction in bull spermatozoa with norepinephrine. J Androl. 2002;23(3):352–357.

    CAS  PubMed  Google Scholar 

  34. Tolszczuk M, Pelletier G. Autoradiographic localization of beta-adrenergic receptors in rat oviduct. Mol Cell Endocrinol. 1988;60(1):95–99.

    Article  CAS  PubMed  Google Scholar 

  35. Einspanier R, Gabler C, Kettler A, Kloas W. Characterization and localization of beta2-adrenergic receptors in the bovine oviduct: indication for progesterone-mediated expression. Endocrinology. 1999;140(6):2679–2684.

    Article  CAS  PubMed  Google Scholar 

  36. Čikoš Š, Veselá J, Iľková G, Rehák P, Czikková S, Koppel J. Expression of beta adrenergic receptors in mouse oocytes and preimplantation embryos. Mol Reprod Dev. 2005;71(2):145–153.

    Article  PubMed  CAS  Google Scholar 

  37. Čikoš S, Rehák P, Czikková S, Veselá J, Koppel J. Expression of adrenergic receptors in mouse preimplantation embryos and ovulated oocytes. Reproduction. 2007;133(6):1139–1147.

    Article  PubMed  CAS  Google Scholar 

  38. Dobson H, Ghuman S, Prabhakar S, Smith R. A conceptual model of the influence of stress on female reproduction. Reproduction. 2003;125(2):151–163.

    Article  CAS  PubMed  Google Scholar 

  39. Koob GF. Corticotropin-releasing factor, norepinephrine, and stress. Biol Psychiatr. 1999;46(9):1167–1180.

    Article  CAS  Google Scholar 

  40. Dobson H, Smith RF. Stress and subfertility. Reprod Domest Anim. 1998;33(3–4):107–111.

    Article  CAS  Google Scholar 

  41. Bodis J, Bognar Z, Hartmann G, Török A, Csaba IF. Measurement of noradrenaline, dopamine and serotonin contents in follicular fluid of human Graafian follicles after superovulation treatment. Gynecol Obstet Invest. 1992;33(3):165–167.

    Article  CAS  PubMed  Google Scholar 

  42. Mayerhofer A, Smith GD, Danilchik M, et al. Oocytes are a source of catecholamines in the primate ovary: evidence for a cell-cell regulatory loop. Proc Natl Acad Sci USA. 1998;95(18):10990–10995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lara HE, Porcile A, Espinoza J, et al. Release of norepinephrine from human ovary: coupling to steroidogenic response. Endocrine. 2001;15(2):187–192.

    Article  CAS  PubMed  Google Scholar 

  44. Young FM, Menadue MF, Lavranos TC. Effects of the insecticide amitraz, an alpha2-adrenergic receptor agonist, on human luteinized granulose cells. Hum Reprod. 2005;20(11):3018–3025.

    Article  CAS  PubMed  Google Scholar 

  45. Kotwica J, Bogacki M, Rekawiecki R. Neural regulation of the bovine corpus luteum. Domest Anim Endocrinol. 2002;23(1–2):299–308.

    Article  CAS  PubMed  Google Scholar 

  46. Rey-Ares V, Lazarov N, Berg D, Berg U, Kunz L, Mayerhofer A. Dopamine receptor repertoire of human granulose cells. Reprod Biol Endocrinol. 2007;5:40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Ramirez AR, Castro MA, Angulo C, et al. The presence and function of dopamine type 2 receptors in boar sperm: a possible role for dopamine in viability, capacitation, and modulation of sperm motility. Biol Reprod. 2009;80(4):753–761.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozef Mihalik PhD, DVM.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mihalik, J., Mašlanková, J., Špakovská, T. et al. Impact of 2 Doses of Clorgyline on the Rat Preimplantation Embryo Development and the Monoamine Levels in Urine. Reprod. Sci. 17, 734–741 (2010). https://doi.org/10.1177/1933719110369181

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719110369181

Keywords

Navigation