Gender Differences in Cardiovascular Disease: Hormonal and Biochemical Influences

Abstract

Objective

Atherosclerosis is a complex process characterized by an increase in vascular wall thickness owing to the accumulation of cells and extracellular matrix between the endothelium and the smooth muscle cell wall. There is evidence that females are at lower risk of developing cardiovascular disease (CVD) as compared to males. This has led to an interest in examining the contribution of genetic background and sex hormones to the development of CVD. The objective of this review is to provide an overview of factors, including those related to gender, that influence CVD.

Methods

Evidence analysis from PubMed and individual searches concerning biochemical and endocrine influences and gender differences, which affect the origin and development of CVD.

Results

Although still controversial, evidence suggests that hormones including estradiol and androgens are responsible for subtle cardiovascular changes long before the development of overt atherosclerosis.

Conclusion

Exposure to sex hormones throughout an individual’s lifespan modulates many endocrine factors involved in atherosclerosis.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Okey R, Stewart D. Diet and blood cholesterol in normal women. J Biol Chem. 1932;99(3):717, 1933.

    Google Scholar 

  2. 2.

    Anonymous. Hormones and atherosclerosis. Meeting in Utah. BMJ. 1958;1(5078):1059–1060.

    Article  Google Scholar 

  3. 3.

    Bonneux L, Barendregt JJ. Ischaemic heart disease and cholesterol. There’s more to heart disease than cholesterol. BMJ. 1994;308(6935):1038, 1041.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Ravnskov U. Ischaemic heart disease and cholesterol. Optimism about drug treatment is unjustified. BMJ. 1994; 308(6935):1038, 1041.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Marín A, Medrano MJ, González J, et al. Risk of ischaemic heart disease and acute myocardial infarction in a Spanish population: observational prospective study in a primary-care setting. BMC Public Health. 2006;6:38.

    PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Law MR, Wald NJ, Rudnicka AR. Quantifying effect of statins on low density lipoprotein cholesterol, ischaemic heart disease, and stroke: systematic review and meta-analysis. BMJ. 2003;326(7404):1423.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Brunzell JD. Clinical practice. Hypertriglyceridemia. N Engl J Med. 2007;357(10):1009–1017.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Lieb W, Larson MG, Benjamin EJ, et al. Multimarker approach to evaluate correlates of vascular stiffness: the Framingham Heart Study. Circulation. 2009;119(1):37–43.

    PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Ridker PM, Danielson E, Fonseca FA, et al, for the JUPITER Study Group. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359(21):2195–2207.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Glynn RJ, MacFadyen JG, Ridker PM. Tracking of high-sensitivity C-reactive protein after an initially elevated concentration: the JUPITER Study. Clin Chem. 2009;55(2): 305–312.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    González-Clemente JM, Giménez-Palop O, Vilardell C, Caixàs A, Giménez-Pérez G. Are statins analogues of vitamin D? Lancet. 2006;368(9543):1233.

    PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Pérez-Castrillón JL, Vega G, Abad L, et al. Effects of atorvastatin on vitamin D levels in patients with acute ischemic heart disease. Am J Cardiol. 2007;99(7):903–905.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  13. 13.

    Penttinen J. Hypothesis: low serum cholesterol, suicide, and interleukin-2. Am J Epidemiol. 1995;141(8):716–718.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Hillbrand M, Waite BM, Miller DS, Spitz RT, Lingswiler VM. Serum cholesterol concentrations and mood states in violent psychiatric patients: an experience sampling study. J Behav Med. 2000;23(6):519–529.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Marcoff L, Thompson PD. The role of coenzyme Q10 in statin-associated myopathy: a systematic review. J Am Coll Cardiol. 2007;49(23):2231–2237.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Phillips GB. Is atherosclerotic cardiovascular disease an endocrinological disorder? The estrogen-androgen paradox. J Clin Endocrin Metab. 2005;90(5):2708–2711.

    CAS  Article  Google Scholar 

  17. 17.

    Wannamethee SG, Tchernova J, Whincup P, et al. Plasma leptin: associations with metabolic, inflammatory and haemostatic risk factors for cardiovascular disease. Atherosclerosis. 2007;191(2):418–426.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Michos ED, Melamed ML. Vitamin D and cardiovascular disease risk. Curr Opin Clin Nutr Metab Care. 2008;11(1): 7–12.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Pérez-López FR. Vitamin D metabolism and cardiovascular risk factors in postmenopausal women. Maturitas. 2009; 62(3):248–262.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  20. 20.

    Perez-Lopez FR, Chedraui P, Gilbert J, Perez-Roncero G. Cardiovascular risk in menopausal women and prevalent related comorbid conditions: facing the post-WHI era. Fertil Steril. 2009;92(4):1171–1186.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Kinder L, Carnethon M, Palaniappan L, King A, Fortmann S. Depression and the metabolic syndrome in young adults: findings from the National Health and Nutrition Examination Survey. Psychosom Med. 2004;66(3):316–322.

    PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Fatourechi V. Subclinical hypothyroidism: an update for primary care physicians. Mayo Clin Proc. 2009;84(1): 65–71.

    PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Evangelista O, McLaughlin M. Review of cardiovascular risk factors in women. Gend Med. 2009;6(1):17–36.

    PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Mankad R, Best P. Cardiovascular disease in older women: a challenge in diagnosis and treatment. Womens Health. 2008; 4(5):449–464.

    Google Scholar 

  25. 25.

    Kaseta JR, Skafar DF, Ram JL, Jacober SJ, Sowers JR. Cardiovascular disease in the diabetic woman. J Clin Endocrinol Metab. 1999;84(6):1835–1838.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Lorenzo C, Williams K, Hunt KJ, Haffner SM. The National Cholesterol Education Program—Adult Treatment Panel III, International Diabetes Federation, and World Health Organization definitions of the metabolic syndrome as predictors of incident cardiovascular disease and diabetes. Diabetes Care. 2007;30(1):8–13.

    PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Shearman AM, Cooper JA, Kotwinski PJ, et al. Estrogen receptor alpha gene variation is associated with risk of myocardial infarction in more than seven thousand men from five cohorts. Circ Res. 2006;98(5):590–592.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Hodges YK, Tung L, Yan XD, Graham JD, Horwitz KB, Horwitz LD. Estrogen receptors alpha and beta: prevalence of estrogen receptor beta mRNA in human vascular smooth muscle and transcriptional effects. Circulation. 2000;101(15): 1792–1798.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Schuit SC, Oei HH, Witteman JC, et al. Estrogen receptor alpha gene polymorphisms and risk of myocardial infarction. JAMA. 2004;291(24):2969–2977.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Schuit SC, de Jong FH, Stolk L, et al. Estrogen receptor alpha gene polymorphisms are associated with estradiol levels in postmenopausal women. Eur J Endocrinol. 2005;153(2): 327–334.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Liu PY, Christian RC, Ruan M, Miller VM, Fitzpatrick LA. Correlating androgen and estrogen steroid receptor expression with coronary calcification and atherosclerosis in men without known coronary artery disease. J Clin Endocrinol Metab. 2005; 90(2):1041–1046.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Christian RC, Liu PY, Harrington S, Ruan M, Miller VM, Fitzpatrick LA. Intimal estrogen receptor (ER) beta, but not ER alpha expression, is correlated with coronary calcification and atherosclerosis in pre- and postmenopausal women. J Clin Endocrinol Metab. 2006;91(7):2713–2720.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Lindner V, Kim SK, Karas RH, Kuiper GG, Gustafsson JA, Mendelsohn ME. Increased expression of estrogen receptor-beta mRNA in male blood vessels after vascular injury. Circ Res. 1998;83(2):224–229.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Rexrode KM, Ridker PM, Hegener HH, Buring JE, Manson JAE, Zee RYL. Polymorphisms and haplotypes of the estrogen receptor-β gene (ESR2) and cardiovascular disease in men and women. Clin Chem. 2007;53(10):1749–1756.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Domingues-Montanari S, Subirana I, Tomás M, Marrugat J, Sentí M. Association between ESR2 genetic variants and risk of myocardial infarction. Clin Chem. 2008;54(7):1183–1189.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Goulart AC, Zee RY, Rexrode KM. Association of estrogen receptor 2 gene polymorphisms with obesity in women (obesity and estrogen receptor 2 gene). Maturitas. 2009;62(2): 179–183.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Haas E, Bhattacharya I, Brailoiu E, et al. Regulatory role of G protein-coupled estrogen receptor for vascular function and obesity. Circ Res. 2009;104(3):288–291.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Mårtensson UE, Salehi SA, Windahl S, et al. Deletion of the G protein-coupled receptor 30 impairs glucose tolerance, reduces bone growth, increases blood pressure, and eliminates estradiol-stimulated insulin release in female mice. Endocrinology. 2009;150(2):687–698.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  39. 39.

    Barrett-Connor E, Bush TL. Estrogens and coronary heart disease in women. JAMA. 1991;265(14):1861–1867.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Reckelhoff JF. Gender differences in the regulation of blood pressure. Hypertension. 2001;37(5):1199–1208.

    CAS  Article  Google Scholar 

  41. 41.

    Ho JE, Paultre F, Mosca L. The gender gap in coronary heart disease mortality: is there a difference between blacks and whites? J Womens Health (Larchmt). 2005;14(2):117–127.

    Article  Google Scholar 

  42. 42.

    Perez Lopez F, Cuadros-Lopez J, Fernadez A, Cuadros-Celorrio A, Sabatel-Lopez R, Chedraui P. Assessing fatal cardiovascular disease with the SCORE scale in post-menopausal women 10 years after different hormonal treatment regimens. Gynecological Endocrinology. http://www.gynecologicalendocrinology.org/services/journal.htm. Posted online on 17 Nov 2009.

  43. 43.

    Lemieux S, Després JP, Moorjani S, et al. Are gender differences in cardiovascular disease risk factors explained by the level of visceral adipose tissue? Diabetologia. 1994;37(8): 757–764.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Tomaszewski M, Charchar FJ, Maric C, et al. Association between lipid profile and circulating concentrations of estrogens in young men. Atherosclerosis. 2009;203(1):257–262.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Mohlke KL, Boehnke M, Abecasis GR. Metabolic and cardiovascular traits: an abundance of recently identified common genetic variants. Hum Mol Genet. 2008;17(R2):R102–R108.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Okada M, Nomura S, Ikoma Y, Yamamoto E, Ito T, Matsui T, Tamakoshi K, Mizutani S. Effects of postmenopausal hormone therapy on hemoglobin A1C levels. Diabetes Care. 2003;26(4):1088–1092.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Johnson J, Slentz C, Duscha B, et al. Gender and racial differences in lipoprotein subclass distributions: the STRRIDE study. Atherosclerosis. 2004;176(2):371–377.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Otvos JD, Collins D, Freedman DS, et al. Low-density lipoprotein and high-density lipoprotein particle subclasses predict coronary events and are favorably changed by gemfibrozil therapy in the Veterans Affairs High-Density Lipoprotein Intervention Trial. Circulation. 2006;113(12):1556–1563.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Persson J, Nilsson J, Lindholm MW. Cytokine response to lipoprotein lipid loading in human monocyte-derived macrophages. Lipids Health Dis. 2006;5:17.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  50. 50.

    Rifici VA, Khachadurian AK. The inhibition of low-density lipoprotein oxidation by 17 β-estradiol. Metabolism. 1992; 41(10):1110–1114.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Negre-Salvayre A, Pieraggi MT, Mabile L, Salvayre R. Protective effect of 17-’8-estradiol against the cytotoxicity of minimally oxidized LDL to cultured bovine aortic endothelial cells. Atherosclerosis. 1993;99(2):209–217.

    Article  Google Scholar 

  52. 52.

    Huber LA, Scheffler E, Poll T, Ziegler R, Dresel HA. 17 Beta-estradiol inhibits LDL oxidation and cholesterol ester formation in cultured macrophages. Free Radic Res Commun. 1990;8(3):167–173.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    Lloyd-Jones DM, O’Donnell CJ, D’Agostino RB, Massaro J, Silbershatz H, Wilson PW. Applicability of cholesterol-lowering primary prevention trials to a general population: the Framingham heart study. Arch Intern Med. 2001;161(7): 949–954.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Third Report of the National Cholesterol Education Program (NCEP). Detection, evaluation and treatment of high blood cholesterol in adults (Adult Treatment Panel III). Circulation. 2002;106(25):3143–3421.

    PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Shlipak MG, Simon JA, Vittinghoff E, et al. Estrogen and progestin, lipoprotein(a) and the risk of recurrent coronary heart disease events after menopause. JAMA. 2000;283(14): 1845–1852.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Vaid Ya D, Dobs A, Gapstur SM, et al. The association of endogenous sex hormones with lipoprotein subfraction profile in the Multi-Ethnic Study of Atherosclerosis. Metabolism. 2008;57(6):782–790.

    CAS  Article  Google Scholar 

  57. 57.

    Freedman DS, Otvos JD, Jeyarajah EJ, et al. Sex and age differences in lipoprotein subclasses measured by nuclear magnetic resonance spectroscopy: the Framingham Study. Clin Chem. 2004;50(7):1189–1200.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    Rossouw JE, Anderson GL, Prentice RL, et al, for the Writing Group for the Women’s Health Initiative Investigators. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA. 2002;288(3): 321–333.

    CAS  Article  Google Scholar 

  59. 59.

    Anderson G, Limacher M, Assaf AR, et al. Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the WHI RCT. JAMA. 2004;291(14):1701–1712.

    CAS  Article  Google Scholar 

  60. 60.

    Turgeon J, McDonnell D, Martin K, Wise P. Hormone therapy: physiological complexity belies therapeutic simplicity. Science. 2004;304(5676):1269–1273.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Naftolin F, Taylor HS, Karas R, et al, for the Women’s Health Initiative. The Women’s Health Initiative could not have detected cardioprotective effects of starting hormone therapy during the menopausal transition. Fertil Steril. 2004;81(6): 1498–1501.

    PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Manson JE, Allison MA, Rossouw JE, et al. Estrogen therapy and coronary-artery calcification. N Engl J Med. 2007;356(25): 2591–2602.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  63. 63.

    Egbrink MG, Van Gestel MA, Broeders MA, et al. Regulation of microvascular thromboembolism in vivo. Microcirculation. 2005;12(3):287–300.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  64. 64.

    Maffei S, Mercuri A, Prontera C, Zucchelli GC, Vassalle C. Vasoactive biomarkers and oxidative stress in healthy recently postmenopausal women treated with hormone replacement therapy. Climacteric. 2006;9(6):452–458.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  65. 65.

    Taddei S, Virdis A, Ghiadoni L, Versari D, Salvetti A. Endothelium, aging, and hypertension. Curr Hypertens Rep. 2006;8(1):84–89.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    Byar DP. Proceedings: the Veterans Administration Cooperative Urological Research Group’s studies of cancer of the prostate. Cancer. 1973;32(5):1126–1130.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. 67.

    Akkad AA, Halligan AW, Abrams K, al-Azzawi F. Differing responses in blood pressure over 24 hours in normotensive women receiving oral or transdermal estrogen replacement therapy. Obstet Gynecol. 1997;89(1):97–103.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Harmon S, Brinton E, Cedars M, et al. KEEPS: The Kronos Early Estrogen Prevention Study. Climacteric. 2005;8(1):3–12.

    Article  Google Scholar 

  69. 69.

    Farhat MY, Lavigne MC, Ramwell PW. The vascular protective effects of estrogen. FASEB J. 1996;10(5):615–624.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. 70.

    Skafar DF, Xu R, Morales J, Ram J, Sowers JR. Female sex hormones and cardiovascular disease in women. J Clin Endocrinol Metab. 1997;82(12):3913–3918.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Simoncini T, Mannella P, Fornari L, et al. Differential signal transduction of progesterone and medroxyprogesterone acetate in human endothelial cells. Endocrinology. 2004;145(12): 5745–5756.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. 72.

    Kublickiene K, Svedas E, Landgren BM, et al. Small artery endothelial dysfunction in postmenopausal women: in vitro function, morphology, and modification by estrogen and selective estrogen receptor modulators. J Clin Endocrinol Metab. 2005;90(11):6113–6122.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    Rossouw JE, Prentice PL, Manson JE, et al. Postmenopausal hormone therapy and risk of cardiovascular disease by age and years since menopause. JAMA. 2007;297(13):1465–1477.

    CAS  Article  Google Scholar 

  74. 74.

    Rivera CM, Grossardt BR, Rhodes DJ, et al. Increased cardiovascular mortality after early bilateral oophorectomy. Menopause. 2009;16(1):15–23.

    PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Nelson LM. Primary ovarian insufficiency. N Engl J Med. 2009;360(6):606–614.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Parker WH, Manson JE. Oophorectomy and cardiovascular mortality: is there a link? Menopause. 2009;16(1):1–2.

    PubMed  Article  PubMed Central  Google Scholar 

  77. 77.

    Collins P. Vascular effect of hormones. Maturitas. 2001;38(1): 45–51.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. 78.

    Schnoes KK, Jaffe IZ, Iyer L, et al. Rapid recruitment of temporally distinct vascular gene sets by estrogen. Mol Endocrinol. 2008;22(11):2544–2556.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. 79.

    Peter I, Kelley-Hedgepeth A, Huggins GS, et al. Association between arterial stiffness and variations in oestrogen-related genes. J Hum Hypertens. 2009;23(10):636–644.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Williams JK, Delansorne R, Paris J. Estrogens, progestins and coronary artery reactivity in atherosclerotic monkeys. J Steroid Biochem Mol Biol. 1998;65(1–6):219–224.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. 81.

    Mendelsohn ME. Genomic and nongenomic effects of estrogen in the vasculature. Am J Cardiol. 2002;90(1A):3F–6F.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  82. 82.

    Teoh H, Quan A, Leung SW, Man RY. Vascular effects of estrone and diethylstilbestrol in porcine coronary arteries. Menopause. 2009;16(1):104–109.

    PubMed  Article  PubMed Central  Google Scholar 

  83. 83.

    Mercuro G, Zoncu S, Saiu F, Mascia M, Melis GB, Rosano GM. Menopause induced by oophorectomy reveals a role of ovarian estrogen on the maintenance of pressure homeostasis. Maturitas. 2004;47(2):131–138.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  84. 84.

    Ichikawa J, Sumino H, Ichikawa S, Ozaki M. Different effects of transdermal and oral hormone replacement therapy on the renin-angiotensin system, plasma bradykinin level, and blood pressure of normotensive postmenopausal women. Am J Hypertens. 2006;19(7):744–749.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  85. 85.

    Mueck AO, Seeger H. Effect of hormone therapy on BP in normotensive and hypertensive postmenopausal women. Maturitas. 2004;49(3):189–203.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  86. 86.

    Vongpatanasin W, Tuncel M, Mansour Y, Arbique D, Victor RG. Transdermal estrogen replacement therapy decreases sympathetic activity in postmenopausal women. Circulation. 2001;103(24):2903–2908.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  87. 87.

    Haas E, Meyer MR, Schurr U, et al. Differential effects of 17beta-estradiol on function and expression of estrogen receptor alpha, estrogen receptor beta, and GPR30 in arteries and veins of patients with atherosclerosis. Hypertension. 2007; 49(6):1358–1363.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  88. 88.

    Tech H, Quan A, Leung S. Vascular effects of estrone and DES in porcine coronary arteries. Menopause. 2009;16(1): 104–109.

    Article  Google Scholar 

  89. 89.

    Barton M, Cremer J, Mügge A. 17Beta-estradiol acutely improves endothelium-dependent relaxation to bradykinin in isolated human coronary arteries. Eur J Pharmacol. 1998; 362(1):73–76.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  90. 90.

    Lewis DA, Avsar M, Labreche P, Bracamonte M, Jayachandran M, Miller VM. Treatment with raloxifene and 17beta-estradiol differentially modulates nitric oxide and prostanoids in venous endothelium and platelets of ovariectomized pigs. J Cardiovasc Pharmacol. 2006;48(5):231–238.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  91. 91.

    Liu PY, Death AK, Handelsman DJ. Androgens and cardiovascular disease. Endocr Rev. 2003;24(3):313–340.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  92. 92.

    Rexrode KM, Ridker PM, Hegener HH, Buring JE, Manson JE, Zee RY. Genetic variation of the androgen receptor and risk of myocardial infarction and ischemic stroke in women. Stroke. 2008;39(5):1590–1592.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  93. 93.

    Davison SL, Bell R, Donath S, Montalto JG, Davis SR. Androgen levels in adult females: Changes with age, menopause, and oophorectomy. J Clin Endocrinol Metab. 2005; 90(7):3847–3853.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  94. 94.

    Yeap BB. Are declining testosterone levels a major risk factor for ill-health in aging men? Int J Impot Res. 2009;21(1):24–36.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  95. 95.

    Yeap BB, Hyde Z, Almeida OP, et al. Lower testosterone levels predict incident stroke and transient ischemic attack in older men. J Clin Endocrinol Metab. 2009;94(7):2353–2359.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  96. 96.

    Mukherjee TK, Dinh H, Chaudhuri G, Nathan L. Testosterone attenuates expression of vascular cell adhesion molecule-1 by conversion to estradiol by aromatase in endothelial cells: implications in atherosclerosis. Proc Natl Acad Sci U S A. 2002;99(6):4055–4060.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. 97.

    Teoh H, Quan A, Leung SW, Man RY. Differential effects of 17beta-estradiol and testosterone on the contractile responses of porcine coronary arteries. Br J Pharmacol. 2000;129(7):1301–1308.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. 98.

    Traish AM, Saad F, Feeley RJ, Guay AT. The dark side of testosterone deficiency: III. Cardiovascular disease. J Androl. 2009;30(5):477–494.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  99. 99.

    Diano S, Horvath TL, Mor G, et al. Aromatase and estrogen receptor immunoreactivity in the coronary arteries of monkeys and human subjects. Menopause. 1999;6(1):21–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Valkenburg O, Steegers-Theunissen RP, Smedts HP, et al. A more atherogenic serum lipoprotein profile is present in women with polycystic ovary syndrome: a case-control study. J Clin Endocrinol Metab. 2008;93(2):470–476.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  101. 101.

    Luque-Ramírez M, Mendieta-Azcona C, Alvarez-Blasco F, Escobar-Morreale HF. Androgen excess is associated with the increased carotid intima-media thickness observed in young women with polycystic ovary syndrome. Hum Reprod. 2007;22(12):3197–3203.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  102. 102.

    Shaw LJ, Bairey Merz CN, Azziz R, et al. Postmenopausal women with a history of irregular menses and elevated androgen measurements at high risk for worsening cardiovascular event-free survival: results from the National Institutes of Health—National Heart, Lung, and Blood Institute sponsored Women’s Ischemia Syndrome Evaluation. J Clin Endocrinol Metab. 2008;93(4):1276–1284.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. 103.

    Florakis D, Diamanti-Kandarakis E, Katsikis I, et al. Effect of hypocaloric diet plus sibutramine treatment on hormonal and metabolic features in overweight and obese women with polycystic ovary syndrome: a randomized, 24-week study. Int J Obes (Lond). 2008;32(4):692–699.

    CAS  Article  Google Scholar 

  104. 104.

    Maturana MA, Breda V, Lhullier F, Spritzer PM. Relationship between endogenous testosterone and cardiovascular risk in early postmenopausal women. Metabolism. 2008; 57(7):961–965.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  105. 105.

    Barrett-Connor EL, Goodman-Gruen D. Prospective study of endogenous sex hormones and fatal cardiovascular disease in postmenopausal women. Br Med J. 1995;311(7014): 1193–1196.

    CAS  Article  Google Scholar 

  106. 106.

    Ding EL, Song Y, Manson JE, Rifai N, Buring JE, Liu S. Plasma sex steroid hormones and risk of developing type 2 diabetes in women: a prospective study. Diabetologia. 2007; 50(10):2076–2084.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  107. 107.

    Khatibi A, Agardh CD, Shakir YA, et al. Could androgens protect middle-aged women from cardiovascular events? A population-based study of Swedish women: The Women’s Health in the Lund Area (WHILA) Study. Climacteric. 2007;10(5):386–392.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  108. 108.

    Page G, Goulart A, Rexrode K. Interrelation between sex hormones and plasma SHBG and HbA1C in healthy postmenopausal women. Metab Syndr Relat Disord. 2009;7(3): 249–254.

    Article  Google Scholar 

  109. 109.

    Bernini GP, Moretti A, Sgró M, et al. Influence of endogenous androgens on carotid wall in postmenopausal women. Menopause. 2001;8(1):43–50.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  110. 110.

    Golden SH, Maguire A, Ding J, et al. Endogenous postmenopausal hormones and carotid atherosclerosis: a case-control study of the atherosclerosis risk in communities cohort. Am J Epidemiol. 2002;155(5):437–445.

    PubMed  Article  PubMed Central  Google Scholar 

  111. 111.

    Debing E, Peeters E, Duquet W, Poppe K, Velkeniers B, Van den Brande P. Endogenous sex hormone levels in postmenopausal women undergoing carotid artery endarterectomy. Eur J Endocrinol. 2007;156(6):687–693.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  112. 112.

    Liu D, Dillon JS. Dehydroepiandrosterone stimulates nitric oxide release in vascular endothelial cells: evidence for a cell surface receptor. Steroids. 2004;69(4):279–289.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  113. 113.

    Ling S, Dai A, Williams MR, et al. Testosterone (T) enhances apoptosis-related damage in human vascular endothelial cells. Endocrinology. 2002;143(3):1119–1125.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  114. 114.

    Formoso G, Chen H, Kim JA, Montagnani M, Consoli A, Quon MJ. Dehydroepiandrosterone mimics acute actions of insulin to stimulate production of both nitric oxide and endothelin 1 via distinct phosphatidylinositol 3-kinase- and mitogen-activated protein kinase-dependent pathways in vascular endothelium. Mol Endocrinol. 2006;20(5): 1153–1163.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  115. 115.

    Galley HF, Webster NR. Physiology of the endothelium. Brit J Anaesth. 2004;93(1):105–113.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  116. 116.

    Vane JR, Anggard EE, Botting RM. Regulatory functions of the vascular endothelium. N Engl J Med. 1990;323(1):27–36.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  117. 117.

    Thambyrajah J, Townend JN. Homocysteine and atherothrombosis—mechanisms for injury. Eur Heart J. 2000; 21(12):967–974.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  118. 118.

    Vallance P, Collier J, Moncada S. Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet. 1989;2(8670):997–1000.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  119. 119.

    Sase K, Michel T. Expression of constitutive endothelial nitric oxide synthase in human blood platelets. Life Sci. 1995;57(22):2049–2055.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  120. 120.

    Chen LY, Mehta JL. Further evidence of the presence of constitutive and inducible nitric oxide synthase isoforms in human platelets. J Cardiovasc Pharmacol. 1996;27(1):154–158.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  121. 121.

    Arnal JF, Douin-Echinard V, Brouchet L, et al. Understanding the oestrogen action in experimental and clinical atherosclerosis. Fundam Clin Pharmacol. 2006;20(6):539–548.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  122. 122.

    Hisamoto K, Ohmichi M, Kurachi H, et al. Estrogen induces the Akt-dependent activation of endothelial nitric-oxide synthase in vascular endothelial cells. J Biol Chem. 2001; 276(5):3459–3467.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  123. 123.

    Selles J, Polini N, Alvarez C, Massheimer V. Progesterone and 17 beta-estradiol acutely stimulate nitric oxide synthase activity in rat aorta and inhibit platelet aggregation. Life Sci. 2001;69(7):815–827.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  124. 124.

    Tsutsumi S, Zhang X, Takata K, et al. Differential regulation of the inducible nitric oxide synthase gene by estrogen receptors 1 and 2. J Endocrinol. 2008;199(2):267–273.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  125. 125.

    Zhu Y, Bian Z, Lu P, et al. Abnormal vascular function and hypertension in mice deficient in estrogen receptor β. Science. 2002;295(5554):505–508.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  126. 126.

    Buchwalow IB, Cacanyiova S, Neumann J, Samoilova VE, Boecker W, Kristek F. The role of arterial smooth muscle in vasorelaxation. Biochem Biophys Res Commun. 2008; 377(2):504–507.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  127. 127.

    Vita JA, Treasure CB, Nabel EG, et al. Coronary vasomotor response to acetylcholine relates to risk factors for coronary artery disease. Circulation. 1990;81(2):491–497.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  128. 128.

    Watts GF, O’Brien SF, Silvester W, Millar JA. Impaired endothelium-dependent and independent dilatation of forearm resistance arteries in men with diet-treated non-insulin-dependent diabetes: role of dyslipidaemia. Clin Sci (Colch). 1996;91(5):567–573.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  129. 129.

    Uittenbogaard A, Shaul PW, Yuhanna IS, Blair A, Smart EJ. High density lipoprotein prevents oxidized low density lipoprotein-induced inhibition of endothelial nitric-oxide synthase localization and activation in caveolae. J Biol Chem. 2000;275(15):11278–11283.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  130. 130.

    O’Conner BJ, Genest J Jr. High-density lipoproteins and endothelial function. Circulation. 2001;104(16):1978–1983.

    Article  Google Scholar 

  131. 131.

    Ferrara N, Gerber HP. The role of vascular endothelial growth factor in angiogenesis. Acta Haematol. 2002;106(4): 148–156.

    Article  Google Scholar 

  132. 132.

    Matsumoto T, Mugishima. Signal transduction via vascular endothelial growth factor (VEGF) receptors and their roles in atherogenesis. J Atheroscler Thromb. 2006;13(3):130–135.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  133. 133.

    Shibuya M. Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis. J Biochem Mol Biol. 2006;39(5):469–478.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134.

    Shizukuda Y, Tang S, Yokota R, Ware JA. Vascular endothelial growth factor-induced endothelial cell migration and proliferation depend on a nitric oxide-mediated decrease in protein kinase Cdelta activity. Circ Res. 1999;85(3): 247–256.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  135. 135.

    Lal BK, Varma S, Pappas PJ, Hobson RW 2nd, Durán WN. VEGF increases permeability of the endothelial cell monolayer by activation of PKB/akt, endothelial nitric-oxide synthase, and MAP kinase pathways. Microvasc Res. 2001; 62(3):252–262.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  136. 136.

    Leek RD, Hunt NC, Landers RJ, Lewis CE, Royds JA, Harris AL. Macrophage infiltration is associated with VEGF and EGFR expression in breast cancer. J Pathol. 2000;190(4): 430–436.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  137. 137.

    Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med. 1999;340(2):115–126.

    CAS  Article  Google Scholar 

  138. 138.

    Jonasson L, Holm J, Skalli O, Bondjers G, Hansson GK. Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis. 1986;6(2):131–138.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  139. 139.

    Häkkinen T, Karkola K, Ylä-Herttuala S. Macrophages, smooth muscle cells, endothelial cells, and T-cells express CD40 and CD40L in fatty streaks and more advanced human atherosclerotic lesions. Colocalization with epitopes of oxidized low-density lipoprotein, scavenger receptor, and CD16 (Fc gammaRIII). Virchows Arch. 2000;437(4): 396–405.

    PubMed  Article  PubMed Central  Google Scholar 

  140. 140.

    Clauss M, Gerlach M, Gerlach H, et al. Vascular permeability factor: a tumor-derived polypeptide that induces endothelial cells and monocyte procoagulant activity, and promotes monocyte migration. J Exp Med. 1990;172(6): 1535–1545.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  141. 141.

    Barleon B, Sozzani S, Zhou D, Weich HA, Mantovani A, Marmé D. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the receptor Flt-1. Blood. 1996;87(8):3336–3343.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  142. 142.

    Celletti FL, Waugh JM, Amabile PG, Brendolan A, Hilfiker PR, Dake MD. Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nat Med. 2001;7(4):425–429.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  143. 143.

    Lopez JJ, Laham RJ, Stamler A, et al. VEGF administration in chronic myocardial ischemia in pigs. Cardiovasc Res. 1998;40(2):272–281.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  144. 144.

    Lazarous DF, Shou M, Scheinowitz M, et al. Comparative effects of basic fibroblast growth factor and vascular endothelial growth factor on coronary collateral development and the arterial response to injury. Circulation. 1996; 94(5):1074–1082.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  145. 145.

    Pérez-López FR, Chedraui P, Haya J, Cuadros JL. Effects of the Mediterranean diet pattern on longevity and age-prevalent morbid conditions. Maturitas. 2009;64(2):67–79.

    PubMed  Article  PubMed Central  Google Scholar 

  146. 146.

    Oak MH, Chataigneau M, Keravis T, et al. Red wine polyphenolic compounds inhibit vascular endothelial growth factor expression in vascular smooth muscle cells by preventing the activation of the p38 mitogen-activated protein kinase pathway. Arterioscler Thromb Vasc Biol. 2003;23(6): 1001–1007.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  147. 147.

    Chan PS, Cervoni P. Prostaglandins, prostacyclin, and thromboxane in cardiovascular diseases. Drug Dev Res. 1986;7(4):341–359.

    CAS  Article  Google Scholar 

  148. 148.

    Moncada S, Higgs EA. Prostaglandins in the pathogenesis and prevention of vascular disease. Blood Rev. 1987;1(2): 141–145.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  149. 149.

    Iñiguez MA, Cacheiro-Llaguno C, Cuesta N, Díaz-Muñoz MD, Fresno M. Prostanoid function and cardiovascular disease. Arch Physiol Biochem. 2008;114(3):201–209.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  150. 150.

    Gleim S, Kasza Z, Martin K, Hwa J. Prostacyclin receptor/thromboxane receptor interactions and cellular responses in human atherothrombotic disease. Curr Atheroscler Rep. 2009; 11(3):227–235.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  151. 151.

    Fetalvero KM, Shyu M, Nomikos AP, et al. The prostacyclin receptor induces human vascular smooth muscle cell differentiation via the protein kinase A pathway. Am J Physiol Heart Circ Physiol. 2006;290(4):H1337–H1346.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  152. 152.

    Arehart E, Gleim S, Kasza Z, Fetalvero KM, Martin KA, Hwa J. Prostacyclin, atherothrombosis, and cardiovascular disease. Curr Med Chem. 2007;14(20):2161–2169.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  153. 153.

    Chataigneau T, Feletou M, Huang PL, Fishman MC, Duhault J, Vanhoutte PM. Acetylcholine-induced relaxation in blood vessels from endothelial nitric oxide synthase knockout mice. Br J Pharmacol. 1999;126(1):219–226.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  154. 154.

    Sugatani J, Miwa M, Komiyama Y, Ito S. High-density lipoprotein inhibits the synthesis of platelet-activating factor in human vascular endothelial cells. J Lipid Mediat Cell Signal. 1996;13(1):73–88.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  155. 155.

    Naqvi TZ, Shah PK, Ivey PA, et al. Evidence that high-density lipoprotein cholesterol is an independent predictor of acute platelet-dependent thrombus formation. Am J Cardiol. 1999;84(9):1011–1017.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  156. 156.

    Sellers MM, Stallone JN. Sympathy for the devil: the role of thromboxane in the regulation of vascular tone and blood pressure. Am J Physiol Heart Circ Physiol. 2008;294(5): H1978–H1986.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  157. 157.

    Davidge ST. Prostaglandin H synthase and vascular function. Circ Res. 2001;89(8):650–660.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  158. 158.

    Hong BK, Kwon HM, Lee BK, et al. Coexpression of cyclooxygenase-2 and matrix metalloproteinases in human aortic atherosclerotic lesions. Yonsei Med J. 2000;41(1):82–88.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  159. 159.

    Tamagaki T, Sawada S, Imamura H, et al. Effects of high-density lipoproteins on intracellular pH and proliferation of human vascular endothelial cells. Atherosclerosis. 1996; 123(1–2):73–82.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  160. 160.

    Cockerill GW, Saklatvala J, Ridley SJ, et al. High-density lipoproteins differentially modulate cytokine-induced expression of E-selectin and cyclooxygenase-2. Arterioscler Thromb Vasc Biol. 1999;19(4):910–917.

    CAS  PubMed  Article  Google Scholar 

  161. 161.

    Herr D, Rodewald M, Fraser HM, et al. Regulation of endothelial proliferation by the renin-angiotensin system in human umbilical vein endothelial cells. Reproduction. 2008; 136(1):125–130.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  162. 162.

    Shi RZ, Wang JC, Huang SH, Wang XJ, Li QP. Angiotensin II induces vascular endothelial growth factor synthesis in mesenchymal stem cells. Exp Cell Res. 2009;315(1):10–15.

    CAS  PubMed  Article  Google Scholar 

  163. 163.

    Ide N, Hirase T, Nishimoto-Hazuku A, Ikeda Y, Node K. Angiotensin II increases expression of IP-10 and the reninangiotensin system in endothelial cells. Hypertens Res. 2008; 31(6):1257–1267.

    CAS  PubMed  Article  Google Scholar 

  164. 164.

    Celi A, Del Fiorentino A, Cianchetti S, Pedrinelli R. Tissue factor modulation by angiotensin II: a clue to a better understanding of the cardiovascular effects of renin-angiotensin system blockade? Endocr Metab Immune Disord Drug Targets. 2008;8(4):308–313.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  165. 165.

    Shan H, Bai X, Chen X. Angiotensin II induces endothelial cell senescence via the activation of mitogen-activated protein kinases. Cell Biochem Funct. 2008;26(4):459–466.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  166. 166.

    Vinh A, Widdop RE, Drummond GR, Gaspari TA. Chronic angiotensin IV treatment reverses endothelial dysfunction in ApoE-deficient mice. Cardiovasc Res. 2008;77(1):178–187.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  167. 167.

    Sluimer JC, Gasc JM, Hamming I, et al. Angiotensin-converting enzyme 2 (ACE2) expression and activity in human carotid atherosclerotic lesions. J Pathol. 2008;215(3):273–279.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  168. 168.

    Van Linthout S, Spillmann F, Lorenz M, et al. Vascular-protective effects of high-density lipoprotein include the downregulation of the angiotensin II type 1 receptor. Hypertension. 2009;53(4):682–687.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  169. 169.

    Lu H, Rateri DL, Feldman DL, et al. Renin inhibition reduces hypercholesterolemia-induced atherosclerosis in mice. J Clin Invest. 2008;118(3):984–993.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. 170.

    Javeshghani D, Sairam MR, Neves MF, Schiffrin EL, Touyz RM. Angiotensin II induces vascular dysfunction without exacerbating blood pressure elevation in a mouse model of menopause-associated hypertension. J Hypertens. 2006;24(7):1365–1373.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  171. 171.

    Xu X, Xiao JC, Luo LF, et al. Effects of ovariectomy and 17beta-estradiol treatment on the renin-angiotensin system, blood pressure, and endothelial ultrastructure. Int J Cardiol. 2008;130(2):196–204.

    PubMed  Article  PubMed Central  Google Scholar 

  172. 172.

    Harvey PJ, Morris BL, Su W, Notarius CF, Miller JA, Floras JS. Estrogen replacement in postmenopausal women activates the renin-angiotensin system at rest and during simulated orthostatic stress but lowers blood pressure. Am J Hypertens. 2003;16(S1):260A–261A.

    Article  Google Scholar 

  173. 173.

    Ichikawa J, Sumino H, Ichikawa S, Ozaki M. Different effects of transdermal and oral hormone replacement therapy on the renin-angiotensin system, plasma bradykinin level, and blood pressure of normotensive postmenopausal women. Am J Hypertens. 2006;19(7):744–749.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  174. 174.

    Umeda M, Ichikawa S, Kanda T, Sumino H, Kobayashi I. Hormone replacement therapy increases plasma level of angiotensin II in postmenopausal hypertensive women. Am J Hypertens. 2001;14(3):206–211.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  175. 175.

    Langrish JP, Mills NL, Bath LE, et al. Cardiovascular effects of physiological and standard sex steroid replacement regimens in premature ovarian failure. Hypertension. 2009; 53(5):805–811.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  176. 176.

    Kalantaridou SN, Naka KK, Papanikolaou E, et al. Impaired endothelial function in young women with premature ovarian failure: normalization with hormone therapy. J Clin Endocrinol Metab. 2004;89(8):3907–3913.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  177. 177.

    Connell JM, MacKenzie SM, Freel EM, Fraser R, Davies E. A lifetime of aldosterone excess: long-term consequences of altered regulation of aldosterone production for cardiovascular function. Endocr Rev. 2008;29(2):133–154.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  178. 178.

    Perez-Lopez FR. Clinical experiences with drosperinone: from reproductive to postmenopausal years. Maturitas. 2008;60(2):78–91.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  179. 179.

    Wang M, Zukas AM, Hui Y, Ricciotti E, Puré E, FitzGerald GA. Deletion of microsomal prostaglandin E synthase-1 augments prostacyclin and retards atherogenesis. Proc Natl Acad Sci U S A. 2006;103(39):14507–14512.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  180. 180.

    Pérez-López FR. Vitamin D and its implications for musculoskeletal health in women: an update. Maturitas. 2007;58(2): 117–137.

    Article  CAS  Google Scholar 

  181. 181.

    Giovannucci E, Liu Y, Hollis BW, Rimm EB. 25-hydroxyvitamin D and risk of myocardial infarction in men: a prospective study. Arch Intern Med. 2008;168(11):1174–1180.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  182. 182.

    Pilz S, Dobnig H, Nijpels G, et al. Vitamin D and mortality in older men and women. Clin Endocrinol (Oxf). 2009;71(5): 666–672.

    CAS  Article  Google Scholar 

  183. 183.

    Yamamoto T, Kozawa O, Tanabe K, et al. 1,25-dihydroxyvitamin D3 stimulates vascular endothelial growth factor release in aortic smooth muscle cells: role of p38 mitogen-activated protein kinase. Arch Biochem Biophys. 2002;398(1):1–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  184. 184.

    Schleithoff SS, Zittermann A, Tenderich G, Berthold HK, Stehle P, Koerfer R. Vitamin D supplementation improves cytokine profiles in patients with congestive heart failure: a double-blind, randomized, placebo-controlled trial. Am J Clin Nutr. 2006;83(4):754–759.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  185. 185.

    Dobnig H, Pilz S, Scharnagl H, et al. Independent association of low serum 25-hydroxyvitamin d and 1,25-dihydroxyvitamin d levels with all-cause and cardiovascular mortality. Arch Intern Med. 2008;168(12):1340–1349.

    CAS  Article  Google Scholar 

  186. 186.

    Yang R, Barouch LA. Leptin signaling and obesity. Cardiovascular consequences. Circulation Res. 2007;101(6):545–549.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  187. 187.

    Kralisch S, Bluher M, Paschke R, Stumvoll M, Fasshauer M. Adipokines and adipocyte targets in the future management of obesity and the metabolic syndrome. Mini Rev Med Chem. 2007;7(1):39–45.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  188. 188.

    Halberg N, Wernstedt-Asterholm I, Scherer PE. The adipocyte as an endocrine cell. Endocrinol Metab Clin North Am. 2008;37(3):753–768.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  189. 189.

    Matarese G, Mantzoros C, La Cava A. Leptin and adipocytokines: bridging the gap between immunity and atherosclerosis. Curr Pharm Des. 2007;13(36):3676–3680.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  190. 190.

    Rahmouni K, Haynes WG. Leptin and the cardiovascular system. Recent Prog Horm Res. 2004;59:225–244.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  191. 191.

    Fried SK, Ricci MR, Russell CD, Laferrere B. Regulation of leptin production in humans. J Nutrit. 2000;130(12): 3127S–3131S.

    CAS  PubMed  PubMed Central  Google Scholar 

  192. 192.

    Wallace AM, McMahon AD, Packard CJ, et al. Plasma leptin and the risk of cardiovascular disease in the west of Scotland coronary prevention study (WOSCOPS). Circulation. 2001; 104(25):3052–3056.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  193. 193.

    Wolk R, Berger P, Lennon RJ, Brilakis ES, Johnson BD, Somers VK. Plasma leptin and prognosis in patients with established coronary atherosclerosis. J Am Coll Cardiol. 2004;44(9):1819–1824.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  194. 194.

    Shek EW, Brands MW, Hall JE. Chronic leptin infusion increases arterial pressure. Hypertension. 1998;31(1 pt 2):409–414.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  195. 195.

    Correia ML, Morgan DA, Sivitz WI, Mark AL, Haynes WG. Leptin acts in the central nervous system to produce dose-dependent changes in arterial pressure. Hypertension. 2001; 37(3):936–942.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  196. 196.

    Sierra-Honigmann MR, Nath AK, Murakami C, et al. Biological action of leptin as an angiogenic factor. Science. 1998; 28(5383):1683–1686.

    Article  Google Scholar 

  197. 197.

    Fruhbeck G. Pivotal role of nitric oxide in the control of blood pressure after leptin administration. Diabetes. 1999; 48(4):903–908.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  198. 198.

    Lembo G, Vecchione C, Fratta L, et al. Leptin induces direct vasodilation through distinct endothelial mechanisms. Diabetes. 2000;49(2):293–297.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  199. 199.

    Kimura K, Tsuda K, Baba A, et al. Involvement of nitric oxide in endothelium-dependent arterial relaxation by leptin. Biochem Biophys Res Commun. 2000;273(2):745–749.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  200. 200.

    Gardiner SM, Kemp PA, March JE, Bennett T. Regional haemodynamic effects of recombinant murine or human leptin in conscious rats. Br J Pharmacol. 1999;130(4): 805–810.

    Article  Google Scholar 

  201. 201.

    Korda M, Kubant R, Patton S, Malinski T. Leptin-induced endothelial dysfunction in obesity. Am J Physiol Heart Circ Physiol. 2008;295(4):H1514–H1521.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  202. 202.

    Brydon L, O’Donnell K, Wright CE, Wawrzyniak AJ, Wardle J, Steptoe A. Circulating leptin and stress-induced cardiovascular activity in humans. Obesity (Silver Spring). 2008;16(12):2642–2647.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  203. 203.

    Bełtowski J, Jamroz-Wiśniewska A, Widomska S. Adiponectin and its role in cardiovascular diseases. Cardiovasc Hematol Disord Drug Targets. 2008;8(1):7–46.

    PubMed  Article  PubMed Central  Google Scholar 

  204. 204.

    Okamoto Y, Arita Y, Nishida M, et al. An adipocyte-derived plasma protein, adiponectin, adheres to injured vascular walls. Horm Metab Res. 2000;32(2):47–50.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  205. 205.

    Yamauchi T, Kamon J, Ito Y, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 2003;423(6941):762–769.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  206. 206.

    Bråkenhielm E, Veitonmäki N, Cao R, et al. Adiponectin-induced antiangiogenesis and antitumor activity involve caspase-mediated endothelial cell apoptosis. Proc Natl Acad Sci U S A. 2004;101(8):2476–2481.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  207. 207.

    Ukkola O. Santaniemi M. Adiponectin: a link between excess adiposity and associated comorbidities? J Mol Med. 2002;80(11):696–702.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  208. 208.

    Maeda N, Shimomura I, Kishida K, et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med. 2002;8(7):731–737.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  209. 209.

    Moulton KS, Heller E, Konerding MA, Flynn E, Palinski W, Folkman J. Angiogenesis inhibitors endostatin or TNP-470 reduce intimal neovascularization and plaque growth in apolipoprotein E-deficient mice. Circulation. 1999;99(13): 1726–1732.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  210. 210.

    Kizer J, Barzilay JI, Kuller LH, Gottdiener JS. Adiponectin and risk of coronary heart disease in older men and women. J Clin Endocrin Metab. 2008;93(9):3357–3364.

    CAS  Article  Google Scholar 

  211. 211.

    Chen BH, Song Y, Ding EL, et al. Circulating levels of resistin and risk of type 2 diabetes in men and women: results from two prospective cohorts. Diabetes Care. 2009;32(2):329–334.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  212. 212.

    Butler J, Kalogeropoulos A, Georgiopoulou V, et al, for the Health ABC Study. Serum resistin concentrations and risk of new onset heart failure in older persons: the health, aging, and body composition (Health ABC) study. Arterioscler Thromb Vasc Biol. 2009;29(7):1144–1149.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  213. 213.

    Frankel DS, Vasan RS, D’Agostino RB Sr, et al. Resistin, adiponectin, and risk of heart failure the Framingham offspring study. J Am Coll Cardiol. 2009;53(9):754–762.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  214. 214.

    Papadopoulos DP, Perrea D, Thomopoulos C, et al. Masked hypertension and atherogenesis: the impact on adiponectin and resistin plasma levels. J Clin Hypertens (Greenwich). 2009;11(2):61–65.

    CAS  Article  Google Scholar 

  215. 215.

    Silha JV, Krsek M, Skrha JV, Sucharda P, Nyomba BL, Murphy LJ. Plasma resistin, adiponectin and leptin levels in lean and obese subjects: correlations with insulin resistance. Eur J Endocrinol. 2003;149(4):331–335.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  216. 216.

    Vendrell J, Broch M, Vilarrasa N, et al. Resistin, adiponectin, ghrelin, leptin, and proinflammatory cytokines: relationships in obesity. Obes Res. 2004;12(6):962–971.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  217. 217.

    Lewandowski KC, Szosland K, O’Callaghan C, Tan BK, Randeva HS, Lewinski A. Adiponectin and resistin serumlevels in women with polycystic ovary syndrome during oral glucose tolerance test: a significant reciprocal correlation between adiponectin and resistin independent of insulin resistance indices. Mol Genet Metab. 2005;85(1): 61–69.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  218. 218.

    Travers S, Jeffers B, Bloch C, Hill J, Eckel R. Gender and Tanner stage differences in body composition and insulin sensitivity in early pubertal children. J Clin Endcrinol Metab. 1995;80(1):172–178.

    CAS  Google Scholar 

  219. 219.

    Moran A, Jacobs D, Steinberger J, et al. Insulin resistance during puberty: results from clamp studies. Diabetes. 1999; 48(10):2039–2044.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  220. 220.

    Wilkin T, Murphy M. The gender insulin hypothesis. Int J Obes. 2006;30(7):1056–1061.

    CAS  Article  Google Scholar 

  221. 221.

    Pan W, Cedres L, Liu K. Relationship of clinical diabetes and asymptomatic hyperglycemia to risk of coronary heart disease mortality in men and women. Am J Epidemiol. 1986;123(3): 504–516.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  222. 222.

    Lundberg V, Stegmayr B, Asplund K. Diabetes as a risk factor for myocardial infarction: population and gender perspectives. J Intern Med. 1997;241(6):485–492.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  223. 223.

    Regitz-Zagrosek V, Lehmkuhl E, Mahmoodzadeh S. Gender aspects of the role of the metabolic syndrome as a risk factor for cardiovascular disease. Gend Med. 2007;7(2):130–139.

    CAS  Google Scholar 

  224. 224.

    Abernethy T, Francis T. Studies on the somatic c polysaccharide of pneumoccus. J Exp Med. 1937;65(1):59–73.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  225. 225.

    Manolakou P, Angelopoulou R, Bakoyiannis C. The effects of endogenous and exogenous androgens on cardiovascular disease risk factors and progression. Reprod Biol Endocrinol. 2009;12(7):44.

    Article  CAS  Google Scholar 

  226. 226.

    Sullivan J. Iron and the sex difference in heart disease risk. Lancet. 1981;1(8233):1293–1294.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  227. 227.

    Heinecke J. Oxidants and antioxidants in the pathogenesis of atherosclerosis: implications for the oxidized low density lipoprotein hypothesis. Atherosclerosis. 1998;141(1):1–15.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  228. 228.

    Friedrich N, Milman N, Volzke H, Linneberg A, Jorgensen T. Is serum ferritin within the reference range a risk predictor of cardiovascular disease? Br J Nutr. 2009; 102(4):594–600.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  229. 229.

    Van Der A, Grobbee D, Roest M. Serum ferritin is a risk factor for stroke in postmenopausal women. Stroke. 2003;36(8): 1637–1641.

    Google Scholar 

  230. 230.

    Sainani G, Sainani R. Homocysteine and its role in the pathogenesis of atherosclerotic vascular disease. J Assoc Physicians India. 2002;50(suppl 1):16–23.

    PubMed  PubMed Central  Google Scholar 

  231. 231.

    Selhub J. Homocysteine metabolism. Annu Rev Nutr. 1999; 19:217–246.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  232. 232.

    Wilson K, Lentz S. Mechanisms of the atherogenic effects of elevated homocysteine in experimental models. Semin Vasc Med. 2005;5(2):163–171.

    PubMed  Article  PubMed Central  Google Scholar 

  233. 233.

    Bonaa K, Njolstad I, Ueland P. NORVIT trial investigators. Homocysteine lowering and cadiovascular evens after acute myocardial infarction. N Engl J Med. 2006;354(15): 1578–1588.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  234. 234.

    Papatheodorou L, Weiss N. Vascular oxidant stress and inflammation in hyperhomocysteinemia. Antioxid Redox Signal. 2007;9(11):1941–1958.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  235. 235.

    Domagala T, Undas A, Libura M, Szczeklik A. Pathogenesis of vascular disease in hyperhomocysteinaemia. J Cardiovasc Risk. 1998;5(4):239–247.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  236. 236.

    Coppola A, Davi G, DeStefano V, Mancini F, Cerbone A, DiMinno G. Homocysteine, coagulation, platelet function, and thrombosis. Semin Thromb Hemost. 2000;26(3):243–254.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  237. 237.

    Zhi Y, Huang Y, Li Z, Zhang R. Hypermethylation of estrogen receptor-alpha gene and high homocysteine in atheromatosis patients. Wei Sheng Yan Jiu. 2008;37(3): 314–317.

    CAS  PubMed  PubMed Central  Google Scholar 

  238. 238.

    Bonassi Machado R, Baracat EC, Fernandes CE, Lakryc EM, Rodrigues De Lima G. Effects of estrogen and estrogen-progestogen therapy on homocysteine levels and their correlation with carotid vascular resistance. Gynecol Endocrinol. 2007;23(11):619–624.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  239. 239.

    Nakhai Pour HR, Grobbee DE, Muller M, Emmelot-Vonk M, van der Schouw YT. Serum sex hormone and plasma homocysteine levels in middle-aged and elderly men. Eur J Endocrinol. 2006;155(6):887–893.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amanda Kallen MD.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pérez-López, F.R., Larrad-Mur, L., Kallen, A. et al. Gender Differences in Cardiovascular Disease: Hormonal and Biochemical Influences. Reprod. Sci. 17, 511–531 (2010). https://doi.org/10.1177/1933719110367829

Download citation

Key words

  • Cardiovascular disease
  • atherosclerosis
  • hormones
  • factors
  • gender