Skip to main content
Log in

High-Frequency Ultrasound Assessment of the Murine Heart From Embryo Through to Juvenile

  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Aim

The aim of this study is to assess the murine heart of normal embryos, neonates, and juveniles using high-frequency ultrasound.

Methods

Diastolic function was measured with E/A ratio (E wave velocity/A wave velocity) and isovolumetric relaxation time (IRT), systolic function with isovolumetric contraction time (ICT), percentage fractional shortening (FS %), percentage ejection fraction (EF %). Global cardiac performance was quantified using myocardial performance index (MPI).

Results

Isovolumetric relaxation time remained stable from E10.5 to 3 weeks. Systolic function (ICT) improved with gestation and remained stable from E18.5 onward. Myocardial performance index showed improvement in embryonic life (0.82–0.63) and then stabilized from 1 to 3 week (0.60–0.58). Percentage ejection fraction remained high during gestation (77%–69%) and then decreased from the neonate to juvenile (68%–51%).

Conclusion

The ultrasound biomicroscope allows for noninvasive in-depth assessment of cardiac function of embryos and pups. Detailed physiological and functional cardiac function readouts can be obtained, which is invaluable for comparison to mouse models of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu Q, Leatherbury L, Tian X, Lo CW. Cardiovascular assessment of fetal mice by in utero echocardiography. Ultrasound Med Biol. 2008;34(5):741–752.

    Article  Google Scholar 

  2. Yu Q, Shen Y, Chatterjee B, Siegfried BH, et al. ENU induced mutations causing congenital cardiovascular anomalies. Development. 2004;131(24):6211–6223.

    Article  CAS  Google Scholar 

  3. Lickert H, Takeuchi JK, Walls J, et al. Baf60c is essential for function of BAF chromatin remodeling complexes in heart development. Nature. 2004;432(7013):29.

    Article  Google Scholar 

  4. Spurney CF, Lo CW, Leatherbury L. Fetal mouse imaging using echocardiography: a review of current technology. Echocardiography. 2006;23(10):891–899.

    Article  Google Scholar 

  5. Phoon CK, Aristizabal O, Turnbull DH. 40 MHz Doppler characterization of umbilical and dorsal aortic blood flow in the early mouse embryo. Ultrasound Med Biol. 2000;26(8): 1275–1283.

    Article  CAS  Google Scholar 

  6. Leatherbury L, Yu Q, Lo CW. Noninvasive phenotypic analysis of cardiovascular structure and function in fetal mice using ultrasound. Birth Defects Res C Embryo Today. 2003;69(1): 83–91.

    Article  CAS  Google Scholar 

  7. Spurney CF, Leatherbury L, Lo CW. High-frequency ultrasound database profiling growth, development and cardiovascular function in C57BL/6J mouse fetuses. J Am Soc Echocardiogr. 2004;17(8):893–900.

    Article  Google Scholar 

  8. Yu Q, Leatherbury L, Tian X, Lo CW. Cardiovascular assess¬ment of fetal mice by in utero echocardiography. Ultrasound Med Biol. 2007;34(5):741–752.

    Article  Google Scholar 

  9. Hinton RB Jr, Alfrieri CM, Witt SA, et al. Mouse heart valve structure and function: echocardiographic and morphometric analyses from the fetus through the aged adult. Am J Physiol Heart Circ Physiol. 2008;294(6):480–488.

    Article  Google Scholar 

  10. Zhou YQ, Foster FS, Parkes R, Adamson SL. Developmental changes in left and right ventricular diastolic filling patterns in mice. Am J Physiol Heart Circ Physiol. 2003;285(4): H1563–H1575.

    Article  CAS  Google Scholar 

  11. Tiemann K, Weyer D, Djoufack PC, et al. Increasingmyocardial contraction and blood pressure in C57BL/6 mice during early postnatal development. Am J Physiol Heart Circ Physiol. 2003;284(2):H464–H474.

    Article  CAS  Google Scholar 

  12. Teichholtz LE, Kreuler T, Herman MV, Gorlin R. Problems in echocardiographic volume determination:echocardio-graphic—angiographic correlations in the presence or absence of asynergy. Am J Cardiol. 1976;37(1):7–11.

    Article  Google Scholar 

  13. Tei C, Ling L, Hodge DO, et al. New index of combined systolic and diastolic myocardial performance: a simple and reproductive measure of cardiac function—a study in normals and dialated cardiomyopathy. J Cardiol. 1995;26(6):357–366.

    CAS  PubMed  Google Scholar 

  14. Bose AK, Mathewson JW, Anderson BE, et al. Initial experience with high frequency ultrasound for the newborn C57BL mouse. Echocardiography. 2007;24(4):412–419.

    Article  Google Scholar 

  15. Srinivasan S, Baldwin Scott H, Aristizabal O, et al. Noninvasive, in utero imaging of mouse embryonic heart development with 40 Mhz echocardiography. Circulation. 1998;98(9): 912–918.

    Article  CAS  Google Scholar 

  16. Russell N, Foley M, Kinsley B, Firth R, Coffey M, McAuliffe FM. Effect of pre-gestational diabetes on fetal cardiac function and structure. Am J Obstet Gynecol. 2008;199(3): 213–314.

    Article  Google Scholar 

  17. Liu J, Du J, Zhang C, Walker JW, Huang X. Progressive troponin I loss impairs cardiac relaxation and causes heart failure in mice. Am J Physiol Heart Circ Physiol. 2007;293(2): H1273–H1281.

    Article  CAS  Google Scholar 

  18. Zhou YQ, Zhu Y, Bishop J, et al. Abnormal cardiac inflow patterns during postnatal development in a mouse model of Holt-Oram syndrome. Am J Physiol Heart Circ Physiol. 2005; 289(3):H992–H1001.

    Article  CAS  Google Scholar 

  19. Makikallio K, Jouppila P, Rasanen J. Human fetal cardiac function during the first trimester of pregnancy. Heart. 2005; 91(3):334–338.

    Article  CAS  Google Scholar 

  20. Russell N, McAuliffe FM. First trimester fetal cardiac function. J Ultrasound Med. 2008;27(3):379–383.

    Article  Google Scholar 

  21. Tsutsumi T, Ishii M, Eto G, Hota M, Kato H. Serial evaluation for myocardial performance in fetuses and neonates using a new Doppler index. Pediatr Int. 2002;41(6): 722–727.

    Article  Google Scholar 

  22. Mu J, Qu D, Bartczak A, et al. Fgl2 deficiency causes neonatal death and cardiac dysfunction during embryonic and postnatal development in mice. Physiol Genomics. 2007;31(1):53–62.

    Article  CAS  Google Scholar 

  23. Gui YH, Linask KK, Khowsathit P, Huhta JC. Doppler echocardiography of normal and abnormal embryonic mouse heart. Pediatr Res. 1996;40(4):633–642.

    Article  CAS  Google Scholar 

  24. Kulandavelu S, Qu D, Sunn N, et al. Embryonic and neonatal phenotyping of genetically engineered mice. ILAR J. 2006; 47(2):103–117.

    Article  CAS  Google Scholar 

  25. Stimpel T, Gershey EL. Selecting anesthetic agents for human safety and animal recovery surgery. FASEB J. 1991;5(7):2099–2104.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corrigan, N., Brazil, D.P. & McAuliffe, F.M. High-Frequency Ultrasound Assessment of the Murine Heart From Embryo Through to Juvenile. Reprod. Sci. 17, 147–157 (2010). https://doi.org/10.1177/1933719109348923

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719109348923

Key words

Navigation