Skip to main content

Advertisement

Log in

Reproductive Aging is Associated With Altered Gene Expression in Human Luteinized Granulosa Cells

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Declining reproductive success with aging is attributable to qualitative and quantitative deterioration in oocytes, which are nurtured by granulosa cells (GCs). This prospective study assesses whether reproductive aging is accompanied by differential gene expression in luteinized GCs from in vitro fertilization (IVF) patients. Women with nonovarian infertility etiologies were categorized as younger (≤30, n = 3) or older (≥40, n = 3). During oocyte retrieval, mural GCs were isolated; messenger RNA (mRNA) was extracted and transcribed for complementary DNA (cDNA) microarray analysis. Differential gene expression was confirmed by real-time polymerase chain reaction (PCR). Analysis revealed 120 genes were differentially expressed. Three genes were upregulated and 117 were downre-gulated (including interleukin [IL]-1β, IL-1R2, and IL-6R) in GCs of older versus younger patients. Our data provide evidence of downregulation in IL-1 and IL-6 gene families in luteinized GCs with advancing age. Given previously recognized roles for the IL gene family in folliculogenesis and ovulation, our findings may partly explain ovulatory and luteal dysfunctions associated with reproductive aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gilchrist RB, Ritter LJ, Armstrong DT. Oocyte-somatic cell interactions during follicle development in mammals. Anim Reprod Sci. 2004;82–83:431–446.

  2. Sutton ML, Gilchrist RB, Thompson JG. Effects of in-vivo and in-vitro environments on the metabolism of the cumulus-oocyte complex and its influence on oocyte developmental capacity. Hum Reprod Update. 2003;9(1):35–48.

    Article  CAS  PubMed  Google Scholar 

  3. Li R, Norman RJ, Armstrong DT, Gilchrist RB. Oocyte-secreted factor(s) determine functional differences between bovine mural granulosa cells and cumulus cells. Biol Reprod. 2000;63(3):839–845.

    Article  CAS  PubMed  Google Scholar 

  4. Norwitz ER, Schust DJ, Fisher SJ. Implantation and the survival of early pregnancy. N Engl J Med. 2001;345(19): 1400–1408.

    Article  CAS  PubMed  Google Scholar 

  5. Mishell DR Jr, Thorneycroft IH, Nagata Y, Murata T, Nakamura RM. Serum gonadotropin and steroid patterns in early human gestation. Am J Obstet Gynecol. 1973;117(5): 631–642.

    Article  PubMed  Google Scholar 

  6. Gilchrist RB, Ritter LJ, Armstrong DT. Mouse oocyte mitogenic activity is developmentally coordinated throughout folliculogenesis and meiotic maturation. Dev Biol. 2001; 240(1):289–298.

    Article  CAS  PubMed  Google Scholar 

  7. Gilchrist RB, Morrissey MP, Ritter LJ, Armstrong DT. Comparison of oocyte factors and transforming growth factor-beta in the regulation of DNA synthesis in bovine granulosa cells. Mol Cell Endocrinol. 2003;201(1–2):87–95.

    Article  CAS  PubMed  Google Scholar 

  8. Hussein TS, Froiland DA, Amato F, Thompson JG, Gilchrist RB. Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins. J Cell Sci. 2005;118(pt 22):5257–5268.

    Article  CAS  PubMed  Google Scholar 

  9. Vanderhyden BC, Telfer EE, Eppig JJ. Mouse oocytes promote proliferation of granulosa cells from preantral and antral follicles in vitro. Biol Reprod. 1992;46(6):1196–1204.

    Article  CAS  PubMed  Google Scholar 

  10. De La Fuente R, Eppig JJ. Transcriptional activity of the mouse oocyte genome: companion granulosa cells modulate transcription and chromatin remodeling. Dev Biol. 2001; 229(1):224–236.

    Article  CAS  Google Scholar 

  11. Eppig JJ, Vivieros MM, Marin-Bivens C, De La Fuente R. Regulation of mamalian oocyte maturation. In: Leung PCK, Adashi EY, eds. In the Ovary. Amsterdam: Elsevier Academic Press; 2004:113–129.

    Chapter  Google Scholar 

  12. Webb RJ, Marshall F, Swann K, Carroll J. Follicle-stimulating hormone induces a gap junction-dependent dynamic change in [cAMP] and protein kinase a in mammalian oocytes. Dev Biol. 2002;246(2):441–454.

    Article  CAS  PubMed  Google Scholar 

  13. Ismail RS, Dube M, Vanderhyden BC. Hormonally regulated expression and alternative splicing of kit ligand may regulate kit-induced inhibition of meiosis in rat oocytes. Dev Biol. 1997;184(2):333–342.

    Article  CAS  PubMed  Google Scholar 

  14. Mehlmann LM. Stops and starts in mammalian oocytes: recent advances in understanding the regulation of meiotic arrest and oocyte maturation. Reproduction. 2005;130(6):791–799.

    Article  CAS  PubMed  Google Scholar 

  15. Wu JY, Gonzalez-Robayna IJ, Richards JS, Means AR. Female fertility is reduced in mice lacking Ca2+/ calmodulin-dependent protein kinase IV. Endocrinology. 2000;141(12):4777–4783.

    Article  CAS  PubMed  Google Scholar 

  16. Shimada M, Yamashita Y, Ito J, Okazaki T, Kawahata K, Nishibori M. Expression of two progesterone receptor isoforms in cumulus cells and their roles during meiotic resumption of porcine oocytes. J Mol Endocrinol. 2004;33(1):209–225.

    Article  CAS  PubMed  Google Scholar 

  17. Shimada M, Terada T. FSH and LH induce progesterone production and progesterone receptor synthesis in cumulus cells: a requirement for meiotic resumption in porcine oocytes. Mol Hum Reprod. 2002;8(7):612–618.

    Article  CAS  PubMed  Google Scholar 

  18. Gilchrist RB, Ritter LJ, Cranfield M, et al. Immunoneutralization of growth differentiation factor 9 reveals it partially accounts for mouse oocyte mitogenic activity. Biol Reprod. 2004;71(3):732–739.

    Article  CAS  PubMed  Google Scholar 

  19. Hickey TE, Marrocco DL, Gilchrist RB, Norman RJ, Armstrong DT. Interactions between androgen and growth factors in granulosa cell subtypes of porcine antral follicles. Biol Reprod. 2004;71(1):45–52.

    Article  CAS  PubMed  Google Scholar 

  20. Sadraie SH, Saito H, Kaneko T, Saito T, Hiroi M. Effects of aging on ovarian fecundity in terms of the incidence of apoptotic granulosa cells. J Assist Reprod Genet. 2000;17(3):168–173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Seifer DB, Gardiner AC, Ferreira KA, Peluso JJ. Apoptosis as a function of ovarian reserve in women undergoing in vitro fertilization. Fertil Steril. 1996;66(4):593–598.

    Article  CAS  PubMed  Google Scholar 

  22. Seifer DB, Charland C, Berlinsky D, et al. Proliferative index of human luteinized granulosa cells varies as a function of ovarian reserve. Am J Obstet Gynecol. 1993;169(6):1531–1535.

    Article  CAS  PubMed  Google Scholar 

  23. Seifer DB, DeJesus V, Hubbard K. Mitochondrial deletions in luteinized granulosa cells as a function of age in women undergoing in vitro fertilization. Fertil Steril. 2002;78(5):1046–1048.

    Article  PubMed  Google Scholar 

  24. Nakahara K, Saito H, Saito T, et al. Incidence of apoptotic bodies in membrana granulosa of the patients participating in an in vitro fertilization program. Fertil Steril. 1997;67(2): 302–308.

    Article  CAS  PubMed  Google Scholar 

  25. Nakahara K, Saito H, Saito T, et al. The incidence of apoptotic bodies in membrana granulosa can predict prognosis of ova from patients participating in in vitro fertilization programs. Fertil Steril. 1997;68(2):312–317.

    Article  CAS  PubMed  Google Scholar 

  26. Benifla JL, Sifer C, Bringuier AF, et al. Induced apoptosis and expression of related proteins in granulosa cells from women undergoing IVF: a preliminary study. Hum Reprod. 2002; 17(4):916–920.

    Article  CAS  PubMed  Google Scholar 

  27. Farookhi R. Granulosa cell fusion allows heterologous receptor stimulation of adenylate cyclase and progesterone accumulation. Endocrinology. 1982;110(3):1061–1063.

    Article  CAS  PubMed  Google Scholar 

  28. Kvalheim G, Naume B, Nesland JM. Minimal residual disease in breast cancer. Cancer Metastasis Rev. 1999;18(1):101–108.

    Article  CAS  PubMed  Google Scholar 

  29. Freshney RI. Quantitation and experimental design. In: Culture of Animal Cells. A Manual of Basic Technique. 2nd ed. New York, Alan R Liss, 1988; pp. 227–244.

  30. Vogelstein B, Gillespie D. Preparative and analytical purification of DNA from agarose. Proc Natl Acad Sci U S A. 1979; 76(2):615–619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dafforn A, Chen P, Deng G, et al. Linear mRNA amplification from as little as 5 ng total RNA for global gene expression analysis. Biotechniques. 2004;37(5):854–857.

    Article  CAS  PubMed  Google Scholar 

  32. Li C, Wong WH. Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci U S A. 2001;98(1):31–36.

    Article  CAS  PubMed  Google Scholar 

  33. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 2003;31(4):e15.

  34. Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003; 19(2):185–193.

    Article  CAS  PubMed  Google Scholar 

  35. Zhou L, Rocke DM. An expression index for Affymetrix GeneChips based on the generalized logarithm. Bioinformatics. 2005;21(21):3983–3989.

    Article  CAS  PubMed  Google Scholar 

  36. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–408.

    Article  CAS  PubMed  Google Scholar 

  37. Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A. 1998;95(25): 14863–14868.

    Article  CAS  Google Scholar 

  38. Gerard N, Caillaud M, Martoriati A, Goudet G, Lalmanach AC. The interleukin-1 system and female reproduction. J Endocrinol. 2004;180(2):203–212.

    Article  CAS  PubMed  Google Scholar 

  39. Van der Hoek KH, Woodhouse CM, Brannstrom M, Norman RJ. Effects of interleukin (IL)–6 on luteinizing hormone- and IL-1beta-induced ovulation and steroidogenesis in the rat ovary. Biol Reprod. 1998;58(5):1266–1271.

    Article  PubMed  Google Scholar 

  40. Takehara Y, Dharmarajan AM, Kaufman G, Wallach EE. Effect of interleukin-1 beta on ovulation in the in vitro perfused rabbit ovary. Endocrinology. 1994;134(4):1788–1793.

    Article  CAS  PubMed  Google Scholar 

  41. Martoriati A, Gerard N. Interleukin-1 (IL-1) system gene expression in granulosa cells: kinetics during terminal preovulatory follicle maturation in the mare. Reprod Biol Endocrinol. 2003;1:42.

  42. Barak V, Yanai P, Treves AJ, Roisman I, Simon A, Laufer N. Interleukin-1: local production and modulation of human granulosa luteal cells steroidogenesis. Fertil Steril. 1992;58(4): 719–725.

    Article  CAS  PubMed  Google Scholar 

  43. Ando M, Kol S, Irahara M, Sirois J, Adashi EY. Non-steroidal anti-inflammatory drugs (NSAIDs) block the late, prostanoid-dependent/ceramide-independent component of ovarian IL-1 action: implications for the ovulatory process. Mol Cell Endocrinol. 1999;157(1–2):21–30.

    Article  CAS  PubMed  Google Scholar 

  44. Narko K, Saukkonen K, Ketola I, Butzow R, Heikinheimo M, Ristimaki A. Regulated expression of prostaglandin E(2) receptors EP2 and EP4 in human ovarian granulosa-luteal cells. J Clin Endocrinol Metab. 2001;86(4):1765–1768.

    Article  CAS  PubMed  Google Scholar 

  45. Davis BJ, Lennard DE, Lee CA, et al. Anovulation in cyclooxygenase-2-deficient mice is restored by prostaglandin E2 and interleukin-1beta. Endocrinology. 1999;140(6): 2685–2695.

    Article  CAS  PubMed  Google Scholar 

  46. Brannstrom M, Wang L, Norman RJ. Ovulatory effect of interleukin-1 beta on the perfused rat ovary. Endocrinology. 1993;132(1):399–404.

    Article  CAS  PubMed  Google Scholar 

  47. Young JE, Friedman CI, Danforth DR. Interleukin-1 beta modulates prostaglandin and progesterone production by primate luteal cells in vitro. Biol Reprod. 1997;56(3): 663–667.

    Article  CAS  PubMed  Google Scholar 

  48. Landgren BM, Collins A, Csemiczky G, Burger HG, Baksheev L, Robertson DM. Menopause transition: annual changes in serum hormonal patterns over the menstrual cycle in women during a nine-year period prior to menopause. J Clin Endocrinol Metab. 2004;89(6):2763–2769.

    Article  CAS  PubMed  Google Scholar 

  49. Santoro N, Isaac B, Neal-Perry G, et al. Impaired folliculo-genesis and ovulation in older reproductive aged women. J Clin Endocrinol Metab. 2003;88(11):5502–5509.

    Article  CAS  PubMed  Google Scholar 

  50. Hall Moran V, Leathard HL, Coley J. Urinary hormone levels during the natural menstrual cycle: the effect of age. J Endocrinol. 2001;170(1):157–164.

    Article  CAS  PubMed  Google Scholar 

  51. Ferrell RJ, O’Connor KA, Rodriguez G, et al. Monitoring reproductive aging in a 5-year prospective study: aggregate and individual changes in steroid hormones and menstrual cycle lengths with age. Menopause. 2005;12(5):567–577.

    Article  PubMed  Google Scholar 

  52. Mendoza C, Cremades N, Ruiz-Requena E, et al. Relationship between fertilization results after intracytoplasmic sperm injection, and intrafollicular steroid, pituitary hormone and cytokine concentrations. Hum Reprod. 1999;14(3):628–635.

    Article  CAS  PubMed  Google Scholar 

  53. Karagouni EE, Chryssikopoulos A, Mantzavinos T, Kanakas N, Dotsika EN. Interleukin-1beta and interleukin-1alpha may affect the implantation rate of patients undergoing in vitro fertilization-embryo transfer. Fertil Steril. 1998;70(3): 553–559.

    Article  CAS  PubMed  Google Scholar 

  54. Mendoza C, Ruiz-Requena E, Ortega E, et al. Follicular fluid markers of oocyte developmental potential. Hum Reprod. 2002;17(4):1017–1022.

  55. Levitas E, Chamoun D, Udoff LC, Ando M, Resnick CE, Adashi EY. Periovulatory and interleukin-1 beta-dependent up-regulation of intraovarian vascular endothelial growth factor (VEGF) in the rat: potential role for VEGF in the promotion of periovulatory angiogenesis and vascular permeability. J Soc Gynecol Investig. 2000;7(1):51–60.

    CAS  PubMed  Google Scholar 

  56. Chamoun D, DeMoura MD, Levitas E, et al. Transcriptional and posttranscriptional regulation of intraovarian insulin-like growth factor-binding proteins by interleukin-1beta (IL-1beta): evidence for IL-1beta as an antiatretic principal. Endocrinology. 1999;140(8):3488–3495.

    Article  CAS  PubMed  Google Scholar 

  57. Alpizar E, Spicer LJ. Effects of interleukin-6 on proliferation and follicle-stimulating hormone-induced estradiol production by bovine granulosa cells in vitro: dependence on size of follicle. Biol Reprod. 1994;50(1):38–43.

    Article  CAS  PubMed  Google Scholar 

  58. Breard E, Benhaim A, Feral C, Leymarie P. Rabbit ovarian production of interleukin-6 and its potential effects on gonadotropin-induced progesterone secretion in granulosa and theca cells. J Endocrinol. 1998;159(3):479–487.

    Article  CAS  PubMed  Google Scholar 

  59. Gorospe WC, Hughes FM, Jr., Spangelo BL. Interleukin-6: effects on and production by rat granulosa cells in vitro. Endocrinology. 1992;130(3):1750–1752.

    CAS  PubMed  Google Scholar 

  60. Machelon V, Nome F, Salesse R. Comparative IL-6 effects on FSH and hCG-induced functions in porcine granulosa cell cultures. Cell Mol Biol (Noisy-le-grand). 1994;40(3):373–380.

    CAS  Google Scholar 

  61. Machelon V, Emilie D, Lefevre A, Nome F, Durand-Gasselin I, Testart J. Interleukin-6 biosynthesis in human preovulatory follicles: some of its potential roles at ovulation. J Clin Endocrinol Metab. 1994;79(2):633–642.

    CAS  PubMed  Google Scholar 

  62. Salmassi A, Lu S, Hedderich J, Oettinghaus C, Jonat W, Mettler L. Interaction of interleukin-6 on human granulosa cell steroid secretion. J Endocrinol. 2001;170(2):471–478.

    Article  CAS  PubMed  Google Scholar 

  63. Geva E, Lessing JB, Lerner-Geva L, Azem F, Yovel I, Amit A. Elevated levels of interleukin-6 in the follicular fluid at the time of oocyte retrieval for in vitro fertilization may predict the development of early-form ovarian hyperstimulation syndrome. Fertil Steril. 1997;68(1):133–137.

    Article  CAS  PubMed  Google Scholar 

  64. Ito M, Muraki M, Takahashi Y, et al. Glutathione S-transferase theta 1 expressed in granulosa cells as a biomarker for oocyte quality in age-related infertility. Fertil Steril. 2008; 90(4):1026–1035.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangita Jindal PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hurwitz, J.M., Jindal, S., Greenseid, K. et al. Reproductive Aging is Associated With Altered Gene Expression in Human Luteinized Granulosa Cells. Reprod. Sci. 17, 56–67 (2010). https://doi.org/10.1177/1933719109348028

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719109348028

Key words

Navigation