Skip to main content

Advertisement

Log in

Resistance Artery Adaptation to Pregnancy Counteracts the Vasoconstricting Influence of Plasma From Normal Pregnant Women

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Using a rat model, we investigated the effects of circulating factors in pregnancy on cerebrovascular and systemic vascular function by comparing myogenic reactivity, tone, and endothelial vasodilator production of the posterior cerebral artery (PCA) and mesenteric artery (MA) of nonpregnant (NP) animals perfused with nonpregnant and pregnant human plasma. Arteries from late pregnant (LP) animals were then perfused similarly to evaluate a potential adaptive effect of pregnancy on vessel function. A 3-hour exposure to pregnant plasma caused increased myogenic reactivity and tone in vessels from NP animals and produced a decreased endothelium-derived hyperpolarizing factor response in NP PCAs, findings that were not seen with MAs. The increased reactivity and tone noted in NP vessels was abolished when pregnant plasma was perfused through LP arteries, suggesting these vessels adapt during pregnancy to the vasoconstricting influence of pregnant plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gerber RT, Anwar MA, Poston L. Enhanced acetylcholine induced relaxation in small mesenteric arteries from pregnant rats: an important role for endothelium-derived hyperpolarizing factor (EDHF). Br J Pharmacol. 1998;125(3):455–460.

    Article  CAS  Google Scholar 

  2. Cipolla MJ, Binder ND, Osol G. Myoendometrial vs. placental uterine arteries: structural, mechanical, and functional differences in late-pregnant rabbits. Am J Obstet Gynecol. 1997; 177(1):215–221.

    Article  CAS  Google Scholar 

  3. Davison JM, Dunlop W. Renal hemodynamics and tubular function normal human pregnancy. Kidney Int. 1980;18(2): 152–161.

    Article  CAS  Google Scholar 

  4. Edouard DA, Pannier BM, London GM, Cuche JL, Safar ME. Venous and arterial behavior during normal pregnancy. Am J Physiol. 1998;274(5 pt 2):H1605-H1612.

  5. Weiner CP, Thompson LP. Nitric oxide and pregnancy. Semin Perinatol. 1997;21(5):367–380.

    Article  CAS  Google Scholar 

  6. Elsheikh A, Creatsas G, Mastorakos G, Milingos S, Loutradis D, Michalas S. The renin-aldosterone system during normal and hypertensive pregnancy. Arch Gynecol Obstet. 2001;264(4):182–185.

    Article  CAS  Google Scholar 

  7. Gant NF, Worley RJ, Everett RB, MacDonald PC. Control of vascular responsiveness during human pregnancy. Kidney Int. 1980;18(2):253–258.

    Article  CAS  Google Scholar 

  8. Gant NF, Daley GL, Chand S, Whalley PJ, MacDonald PC. A study of angiotensin II pressor response throughout primigravid pregnancy. J Clin Invest. 1973;52(11):2682–2689.

    Article  CAS  Google Scholar 

  9. Magness RR, Cox K, Rosenfeld CR, Gant NF. Angiotensin II metabolic clearance rate and pressor responses in nonpregnant and pregnant women. Am J Obstet Gynecol. 1994;171(3): 668–679.

    Article  CAS  Google Scholar 

  10. Talledo OE. Renin-angiotensin system in normal and toxemic pregnancies. I. Angiotensin infusion test. Am J Obstet Gynecol. 1966;96(1):141–143.

    Article  CAS  Google Scholar 

  11. Massani ZM, Sanguinetti R, Gallegos R, Raimondi D. Angiotensin blood levels in normal and toxemic pregnancies. Am J Obstet Gynecol. 1967;99(3):313–317.

    Article  CAS  Google Scholar 

  12. Cipolla MJ, Vitullo L, McKinnon J. Cerebral artery reactivity changes during pregnancy and the postpartum period: a role in eclampsia? Am J Physiol Heart Circ Physiol. 2004;286(6): H2127-H2132.

  13. Cipolla MJ. Cerebrovascular function in pregnancy and eclampsia. Hypertension. 2007;50(1):14–24.

    Article  CAS  Google Scholar 

  14. Gillham JC, Kenny LC, Baker PN. An overview of endothelium-derived hyperpolarising factor (EDHF) in normal and compromised pregnancies. Eur J Obstet Gynecol Reprod Biol. 2003;109(1):2–7.

  15. Félétou M, Vanhoutte PM. Endothelium-dependent hyper-polarizations: past beliefs and present facts. Ann Med. 2007; 39(7):495–516.

    Article  Google Scholar 

  16. Cipolla MJ, Smith J, Kohlmeyer MM, Godfrey JA. SKCa and IKCa Channels, myogenic tone, and vasodilator responses in middle cerebral arteries and parenchymal arterioles: effect of ischemia and reperfusion. Stroke. 2009;40(4):1451–1457.

    Article  Google Scholar 

  17. Walsh SW. Eicosanoids in preeclampsia. Prostaglandins Leukot Essent Fatty Acids. 2004;70(2):223–232.

    Article  CAS  Google Scholar 

  18. Ylikorkala O, Viinikka L. Thromboxane A2 in pregnancy and puerperium. Br Med J. 1980;281(6255):1601–1602.

    Article  CAS  Google Scholar 

  19. Walsh SW. Preeclampsia: an imbalance in placental prostacyclin and thromboxane production. Am J Obstet Gynecol. 1985;152(3):335–340.

    Article  CAS  Google Scholar 

  20. Khedun SM, Naicker T, Moodley J. Endothelin-1 activity in pregnancy. J Obstet Gynaecol. 2002;22(6):590–593.

    Article  CAS  Google Scholar 

  21. Taylor RN, Varma M, Teng NN, Roberts JM. Women with preeclampsia have higher plasma endothelin levels than women with normal pregnancies. J Clin Endocrinol Metab. 1990;71(6):1675–1677.

    Article  CAS  Google Scholar 

  22. Timmermans PB, Wong PC, Chiu AT, et al. Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev. 1993;45(2):205–251.

    CAS  PubMed  Google Scholar 

  23. Gallinat S, Busche S, Raizada MK, Sumners C. The angiotensin II type 2 receptor: an enigma with multiple variations. Am J Physiol Endocrinol Metab. 2000;278(3):E357-E374.

  24. Hanssens M, Keirse MJ, Spitz B, van Assche FA. Angiotensin II levels in hypertensive and normotensive pregnancies. Br J Obstet Gynaecol. 1991;98(2):155–161.

    Article  CAS  Google Scholar 

  25. Vincent JM, Kwan YW, Chan SL, Perrin-Sarrado C, Atkinson J, Chillon JM. Constrictor and dilator effects of angiotensin II on cerebral arterioles. Stroke. 2005;36(12): 2691–2695.

    Article  CAS  Google Scholar 

  26. Näveri L, Strömberg C, Saavedra JM. Angiotensin II AT1 receptor mediated contraction of the perfused rat cerebral artery. Neuroreport. 1994;5(17):2278–2280.

    Article  Google Scholar 

  27. De Silva TM, Broughton BR, Drummond GR, Sobey CG, Miller AA. Gender influences cerebral vascular responses to angiotensin II through Nox2-derived reactive oxygen species. Stroke. 2009;40(4):1091–1097.

    Article  Google Scholar 

  28. Faraci FM, Lamping KG, Modrick ML, Ryan MJ, Sigmund CD, Didion SP. Cerebral vascular effects of angiotensin II: new insights from genetic models. J Cereb Blood Flow Metab. 2006;26(4):449–455.

    Article  CAS  Google Scholar 

  29. Stennett AK, Qiao X, Falone AE, Koledova VV, Khalil RA. Increased vascular angiotensin type 2 receptor expression and NOS-mediated mechanisms of vascular relaxation in pregnant rats. Am J Physiol Heart Circ Physiol. 2009;296(3):H745-H755.

  30. Haberl RL, Anneser F, Villringer A, Einhaupl KM. Angiotensin II induces endothelium-dependent vasodilation of rat cerebral arterioles. Am J Physiol. 1990;258(6 pt 2):H1840-H1846.

  31. Gwathmey TM, Shaltout HA, Pendergrass KD, et al. Nuclear angiotensin II type 2 (AT2) receptors are functionally linked to nitric oxide production. Am J Physiol Renal Physiol. 2009;296(6):F1484-F1493.

  32. Grady EF, Sechi LA, Griffin CA, Schambelan M, Kalinyak JE. Expression of AT2 receptors in the developing rat fetus. J Clin Invest. 1991;88(3):921–933.

    Article  CAS  Google Scholar 

  33. Judson JP, Nadarajah VD, Bong YC, Subramaniam K, Sivalingam N. A preliminary finding: immunohistochemical localisation and distribution of placental angiotensin II receptor subtypes in normal and preeclamptic pregnancies. Med J Malaysia. 2006;61(2):173–180.

    CAS  PubMed  Google Scholar 

  34. Nickenig G, Baumer AT, Grohe C, et al. Estrogen modulates AT1 receptor gene expression in vitro and in vivo. Circulation. 1998;97(22):2197–2201.

    Article  CAS  Google Scholar 

  35. Silva-Antonialli MM, Tostes RC, Fernandes L, et al. A lower ratio of AT1/AT2 receptors of angiotensin II is found in female than in male spontaneously hypertensive rats. Cardiovasc Res. 2004;62(3):587–593.

    Article  CAS  Google Scholar 

  36. Faraci FM, Mayhan WG, Heistad DD. Segmental vascular responses to acute hypertension in cerebrum and brain stem. Am J Physiol. 1987;252(4 pt 2):H738-H742.

  37. Baumbach GL, Heistad DD. Regional, segmental, and temporal heterogeneity of cerebral vascular autoregulation. Ann Biomed Eng. 1985;13(3–4):303–310.

    Article  CAS  Google Scholar 

  38. Merchant SJ, Davidge ST. The role of matrix metalloproteinases in vascular function: implications for normal pregnancy and pre-eclampsia. BJOG. 2004;111(9):931–939.

    Article  CAS  Google Scholar 

  39. Myers J, Irvine R, Gillham J, et al. Altered endothelial function in isolated human myometrial vessels induced by plasma from women with pre-eclampsia is not reproducible in isolated mouse vessels. Clin Sci (Lond). 2005;108(5):457–462.

    Article  CAS  Google Scholar 

  40. Hayman R, Warren A, Brockelsby J, Johnson I, Baker P. Plasma from women with pre-eclampsia induces an in vitro alteration in the endothelium-dependent behaviour of myo-metrial resistance arteries. BJOG. 2000;107(1):108–115.

    Article  CAS  Google Scholar 

  41. Hayman R, Warren A, Johnson I, Baker P. Inducible change in the behavior of resistance arteries from circulating factor in preeclampsia: an effect specific to myometrial vessels from pregnant women. Am J Obstet Gynecol. 2001;184(3):420–426.

    Article  CAS  Google Scholar 

  42. Myers J, Mires G, Macleod M, Baker P. In preeclampsia, the circulating factors capable of altering in vitro endothelial function precede clinical disease. Hypertension. 2005;45(2):258–263.

    Article  CAS  Google Scholar 

  43. Myers JE, Hart S, Armstrong S, et al. Evidence for multiple circulating factors in preeclampsia. Am J Obstet Gynecol. 2007;196(3):266.e1–266.e6.

    Article  Google Scholar 

  44. Cipolla MJ, Bullinger LV, Godfrey JA. Pregnancy and PPARγ activation cause small vessel remodeling in the maternal brain and diminished cerebrovascular resistance: a role in eclampsia? Reprod Sci. 2009;16(3 suppl):91A–92A.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilyn J. Cipolla PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amburgey, Ö.A., Reeves, S.A., Bernstein, I.M. et al. Resistance Artery Adaptation to Pregnancy Counteracts the Vasoconstricting Influence of Plasma From Normal Pregnant Women. Reprod. Sci. 17, 29–39 (2010). https://doi.org/10.1177/1933719109345288

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719109345288

Key words

Navigation