Skip to main content

Advertisement

Log in

Loss of Proliferative Capacity in a Retroviral Immortalized Human Uterine Smooth Muscle Cell Line Derived From Leiomyoma Is Restored by hTERT Overexpression

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Overexpression of human telomerase reverse transcriptase (hTERT) has facilitated establishing in vitro model systems for biological research. The plasmid containing hTERT gene was stably transfected into ULTR cells, a retroviral transformed human uterine leiomyomatous smooth-muscle cell line. Cells that express hTERT, termed as ULTR-hT, shared the morphological characteristics of the parental proliferative ULTR cells. They expressed a set of smooth-muscle-specific genes and had increased proliferation rate and prolonged lifespan. Quantitative real-time polymerase chain reaction (PCR) analysis revealed a correlation of proliferation rates of ULTR-hT clonal cells with the level of hTERT expression. ULTR-hT cells also preserved expression of estrogen, progesterone, and oxytocin receptor genes, confirming a myometrial phenotype. Expression of angiotensin II receptors and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase isoforms were also preserved. Our finding suggests that ULTR-hT cells can be a useful in vitro model for studying human myometrium differentiation both in pregnancy and pathological growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Perez-Reyes N, Halbert CL, Smith PP, Benditt EP, McDougall JK. Immortalization of primary human smooth muscle cells. Proc Natl Acad Sci USA. 1992;89(4):1224–1228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zakian VA. Telomeres: beginning to understand the end. Science. 1995;270(5242):1601–1607.

    Article  CAS  PubMed  Google Scholar 

  3. Blackburn EH. Structure and function of telomeres. Nature. 1991;350(6319):569–573.

    Article  CAS  PubMed  Google Scholar 

  4. Allsopp RC, Vaziri H, Patterson C, et al. Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA. 1992;89(21):10114–10118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature. 1990;345(6274): 458–460.

    Article  CAS  PubMed  Google Scholar 

  6. Feng J, Funk WD, Wang SS, et al. The RNA component of human telomerase. Science. 1995;269(5228):1236–1241.

    Article  CAS  PubMed  Google Scholar 

  7. Harrington L, Zhou W, McPhail T, et al. Human telomerase contains evolutionarily conserved catalytic and structural sub-units. Genes Dev. 1997;11(23):3109–3115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ulaner GA, Giudice LC. Developmental regulation of telomerase activity in human fetal tissues during gestation. Mol Hum Reprod. 1997;3(9):769–773.

    Article  CAS  PubMed  Google Scholar 

  9. Wright WE, Piatyszek MA, Rainey WE, Byrd W, Shay JW. Telomerase activity in human germline and embryonic tissues and cells. Dev Genet. 1996;18(2):173–179.

    Article  CAS  PubMed  Google Scholar 

  10. Counter CM, Hirte HW, Bacchetti S, Harley CB. Telomerase activity in human ovarian carcinoma. Proc Natl Acad Sci USA. 1994;91(8):2900–2904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994;266(5193):2011–2015.

    Article  CAS  PubMed  Google Scholar 

  12. Hooijberg E, Ruizendaal JJ, Snijders PJ, Kueter EW, Walboomers JM, Spits H. Immortalization of human CD8+ T cell clones by ectopic expression of telomerase reverse transcriptase. J Immunol. 2000;165(8):4239–4245.

    Article  CAS  PubMed  Google Scholar 

  13. Lee KM, Nguyen C, Ulrich AB, Pour PM, Ouellette MM. Immortalization with telomerase of the Nestin-positive cells of the human pancreas. Biochem Biophys Res Commun. 2003;301(4):1038–1044.

    Article  CAS  PubMed  Google Scholar 

  14. Puttmann S, Senner V, Braune S, et al. Establishment of a benign meningioma cell line by hTERT-mediated immortalization. Lab Invest. 2005;85(9):1163–1171.

    Article  PubMed  CAS  Google Scholar 

  15. Lewis CM, Herbert BS, Bu D, et al. Telomerase immortalization of human mammary epithelial cells derived from a BRCA2 mutation carrier. Breast Cancer Res Treat. 2006;99(1):103–115.

    Article  CAS  PubMed  Google Scholar 

  16. Meyerson M, Counter CM, Eaton EN, et al. hEST2, the putative human telomerase catalytic subunit gene, is upregulated in tumor cells and during immortalization. Cell. 1997;90(4):785–795.

    Article  CAS  PubMed  Google Scholar 

  17. Rodriguez LV, Alfonso Z, Zhang R, Leung J, Wu B, Ignarro LJ. Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells. Proc Natl Acad Sci USA. 2006;103(32):12167–12172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Isenmann S, Cakouros D, Zannettino A, Shi S, Gronthos S. hTERT transcription is repressed by Cbfa1 in human mesenchymal stem cell populations. J Bone Miner Res. 2007;22(6): 897–906.

    Article  CAS  PubMed  Google Scholar 

  19. Hong SH, Nah HY, Lee YJ, et al. Expression of estrogen receptor-alpha and -beta, glucocorticoid receptor, and progesterone receptor genes in human embryonic stem cells and embryoid bodies. Mol Cells. 2004;18(3):320–325.

    CAS  PubMed  Google Scholar 

  20. Nakamoto T, Yasuda K, Yasuhara M, et al. Cigarette smoke extract enhances oxytocin-induced rhythmic contractions of rat and human preterm myometrium. Reproduction. 2006;132(2): 343–353.

    Article  CAS  PubMed  Google Scholar 

  21. Cui X-L, Brockman D, Campos B, Myatt L. Expression of NADPH oxidase isoform 1 (Nox1) in human placenta: involvement in preeclampsia. Placenta. 2006;27(4–5):422–431.

    Article  CAS  PubMed  Google Scholar 

  22. Willey JC, Broussoud A, Sleemi A, Bennett WP, Cerutti P, Harris CC. Immortalization of normal human bronchial epithelial cells by human papillomaviruses 16 or 18. Cancer Res. 1991;51(19):5370–5377.

    CAS  PubMed  Google Scholar 

  23. Bryan TM, Reddel RR. SV40-induced immortalization of human cells. Crit Rev Oncog. 1994;5(4):331–357.

    Article  CAS  PubMed  Google Scholar 

  24. Counter CM, Avilion AA, LeFeuvre CE, et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 1992;11(5):1921–1929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Counter CM, Botelho FM, Wang P, Harley CB, Bacchetti S. Stabilization of short telomeres and telomerase activity accompany immortalization of Epstein-Barr virus-transformed human B lymphocytes. J Virol. 1994;68(5):3410–3414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang J, Chang E, Cherry AM, et al. Human endothelial cell life extension by telomerase expression. J Biol Chem. 1999;274(37):26141–26148.

    Article  CAS  PubMed  Google Scholar 

  27. Rufer N, Migliaccio M, Antonchuk J, Humphries RK, Roosnek E, Lansdorp PM. Transfer of the human telomerase reverse transcriptase (TERT) gene into T lymphocytes results in extension of replicative potential. Blood. 2001;98(3):597–603.

    Article  CAS  PubMed  Google Scholar 

  28. Condon J, Yin S, Mayhew B, et al. Telomerase immortalization of human myometrial cells. Biol Reprod. 2002;67(2): 506–514.

    Article  CAS  PubMed  Google Scholar 

  29. Carney SA, Tahara H, Swartz CD, et al. Immortalization of human uterine leiomyoma and myometrial cell lines after induction of telomerase activity: molecular and phenotypic characteristics. Lab Invest. 2002;82(6):719–728.

    Article  CAS  PubMed  Google Scholar 

  30. Matsumura T, Takesue M, Westerman KA, et al. Establishment of an immortalized human-liver endothelial cell line with SV40T and hTERT. Transplantation. 2004;77(9):1357–1365.

    Article  CAS  PubMed  Google Scholar 

  31. Kudo Y, Hiraoka M, Kitagawa S, et al. Establishment of human cementifying fibroma cell lines by transfection with temperature-sensitive simian virus-40 T-antigen gene and hTERT gene. Bone. 2002;30(5):712–717.

    Article  CAS  PubMed  Google Scholar 

  32. Catherino W, Salama A, Potlog-Nahari C, Leppert P, Tsibris J, Segars J. Gene expression studies in leiomyomata: new directions for research. Semin Reprod Med. 2004;22(2): 83–90.

    Article  CAS  PubMed  Google Scholar 

  33. Shynlova O, Tsui P, Jaffer S, Lye SJ. Integration of endocrine and mechanical signals in the regulation of myometrial functions during pregnancy and labour. Eur J Obstet Gynecol Reprod Biol. 2009;144(suppl 1):S2–S10.

    Article  CAS  PubMed  Google Scholar 

  34. Watanabe K, Ogura G, Suzuki T. Leiomyoblastoma of the uterus: an immunohistochemical and electron microscopic study of distinctive tumours with immature smooth muscle cell differentiation mimicking fetal uterine myocytes. Histopathology. 2003;42(4):379–386.

    Article  CAS  PubMed  Google Scholar 

  35. White SL, Zhou MY, Low RB, Periasamy M. Myosin heavy chain isoform expression in rat smooth muscle development. Am J Physiol. 1998;275(2 pt 1):C581–C589.

    Article  CAS  PubMed  Google Scholar 

  36. Cavaille F, Fournier T, Dallot E, Dhellemes C, Ferre F. Myosin heavy chain isoform expression in human myometrium: presence of an embryonic nonmuscle isoform in leiomyomas and in cultured cells. Cell Motil Cytoskeleton. 1995;30(3): 183–193.

    Article  CAS  PubMed  Google Scholar 

  37. Blough ER, Rice KM, Desai DH, Wehner P, Wright GL. Aging alters mechanical and contractile properties of the Fisher 344/Nnia X Norway/Binia rat aorta. Biogerontology. 2007;8(3):303–313.

    Article  CAS  PubMed  Google Scholar 

  38. Birukov KG, Shirinsky VP, Stepanova OV, et al. Stretch affects phenotype and proliferation of vascular smooth muscle cells. Mol Cell Biochem. 1995;144(2):131–139.

    Article  CAS  PubMed  Google Scholar 

  39. Worth NF, Rolfe BE, Song J, Campbell GR. Vascular smooth muscle cell phenotypic modulation in culture is associated with reorganisation of contractile and cytoskeletal proteins. Cell Motil Cytoskeleton. 2001;49(3):130–145.

    Article  CAS  PubMed  Google Scholar 

  40. Garcia-Verdugo I, Tanfin Z, Dallot E, Leroy MJ, Breuiller-Fouche M. Surfactant protein A signaling pathways in human uterine smooth muscle cells. Biol Reprod. 2008;79(2):348–355.

    Article  CAS  PubMed  Google Scholar 

  41. Malik M, Catherino WH. Novel method to characterize primary cultures of leiomyoma and myometrium with the use of confirmatory biomarker gene arrays. Fertil Steril. 2007;87(5): 1166–1172.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, B., Myatt, L. & Cui, XL. Loss of Proliferative Capacity in a Retroviral Immortalized Human Uterine Smooth Muscle Cell Line Derived From Leiomyoma Is Restored by hTERT Overexpression. Reprod. Sci. 16, 1062–1071 (2009). https://doi.org/10.1177/1933719109344773

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719109344773

Key words

Navigation