Skip to main content
Log in

Imidazole-Based Erythrocyte Markers of Oxidative Stress in Preeclampsia—An NMR Investigation

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Using 1H-nuclear magnetic resonance (NMR) spectroscopy and statistical models, we sought to identify “biomarkers” present in erythrocytes that would distinguish between women with normal pregnancy and those suffering from preeclampsia, and investigate possible links with previously identified plasma “markers.” Erythrocytes from 22 normotensive pregnant women and 15 preeclamptics were analyzed by 1H Carr-Purcell-Meiboom-Gill (CPMG) NMR. Multivariate analysis and logistic regression were applied to differentiate between the 2 groups of patients, and used to develop a diagnostic model based on the concentrations of the constituents identified as being influential. Significantly higher concentrations of alanine (P < .001), glycine (P = .025), and ergothioneine (P = .049) were found in erythrocytes from preeclamptic patients. Discriminant analysis and regression of NMR data permitted 100% accurate diagnosis of the health status of new patients. Chemically related imidazole-based molecules, histidine and ergothioneine, are important in the classification process and the etiology of preeclampsia (PE).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hubel CA. Oxidative stress in the pathogenesis of preeclampsia. Proc Soc Exp Biol Med. 1999;222(3):222–235.

    Article  CAS  PubMed  Google Scholar 

  2. Hubel CA, Roberts JM, Taylor RN, Musci TJ, Rogers GM, McLaughlin MK. Lipid peroxidation in pregnancy: new perspectives in preeclampsia. Am J Obstet Gynecol. 1989;161(4): 1025–1034.

    Article  CAS  PubMed  Google Scholar 

  3. Hung J-H. Oxidative stress and antioxidants in preeclampsia. JCMA. 2007;70(10):430–432.

    CAS  PubMed  Google Scholar 

  4. Ethordevic NZ, Babic GM, Markovic SD, et al. Oxidative stress and changes in antioxidant defense system in erythrocytes of preeclampsia in women. Reprod Tox. 2008;25(2):213–218.

    Article  CAS  Google Scholar 

  5. Kaur G, Mishra S, Sehgal A, Prasad R. Alterations in lipid peroxidataion and antioxidant status in pregnancy with preeclampsia. Mol Cell Biochem. 2008;313(1–2):37–44.

    Article  CAS  PubMed  Google Scholar 

  6. Kumru S, Godekmerdan A, Kutlu S, Ozcan Z. Correlation of maternal serum high-sensitive C-reactive protein levels with biochemical and clinical parameters in preeclampsia. Eur J Obs Gyn Reprod Biol. 2006;124(2):164–167.

    Article  CAS  Google Scholar 

  7. Roes EM, Raijmakers MTM, Zusterzeel PLM, Knapen MCFM, Peters WHM, Steegers EAP. Deficient detoxifying capacity in the pathophysiology of preeclampsia. Med Hypoth. 2000;55(5):415–418.

    Article  CAS  Google Scholar 

  8. Zhang J, Mascioccho M, Lewis D, Sun W, Liu A, Wang Y. Placental anti-oxidant gene polymorphisms, enzyme activity, and oxidative stress in preeclampsia. Placenta. 2008;29(5): 439–443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Poston L, Briley AL, Seed PT, Kelly FJ, Shennan AH. Vitamin C and vitamin E in pregnant women at risk for preeclampsia (VIP trial): randomised placebo-controlled trial. Lancet. 2006;367(9517):1145–1154.

    Article  CAS  PubMed  Google Scholar 

  10. Harsem NK, Braekke K, Staff AC. Augmented oxidative stress as well as antioxidant capacity in maternal circulation in preeclampsia. Eur J Obs Gyn Reprod Biol. 2006;128(1–2):209–215.

    Article  CAS  Google Scholar 

  11. Schins RPF, Keman S, Borm PJA. Blood antioxidant status in coal dust-induced respiratory disorders: a longitudinal evaluation of multiple biomarkers. Biomarkers. 1997;2(1):45–50.

    Article  CAS  Google Scholar 

  12. Pawlak K, Pawlak D, Mysliwiec M. Cu/Zn superoxide dismutase plasma levels as a new useful clinical biomarker of oxidative stress in patients with end-stage renal disease. Clin Biochem. 2005;38(8):700–705.

    Article  CAS  PubMed  Google Scholar 

  13. Dede FS, Guney Y, Dede H, Koca C, Dilbaz B, Bilgihan A. Lipid peroxidation and antioxidant activity in patients in labour with non-reassuring fetal status. Eur J Obs Gyn Reprod Biol. 2006;124(1):27–31.

    Article  CAS  Google Scholar 

  14. Ilhan N, Ilhan N, Simsek M. The changes of trace elements, malondialdehhyde levels and superoxide dismutase activities in pregnancy with or without preeclampsia. Clin Biochem. 2002;35(5):393–397.

    Article  CAS  PubMed  Google Scholar 

  15. Baker PN, Davidge ST, Roberts JM. Plasma from women with preeclampsia increases endothelial cell nitric oxide production. Hypertension. 1995;26(2):244–248.

    Article  CAS  PubMed  Google Scholar 

  16. Regan DG, Kuchel PW. Simulations of molecular diffusion in lattices of cells: insights for NMR of red blood cells. Biophys J. 2002;83(1):161–171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Deuticke B. Transformation and restoration of biconcave shape of human erythrocytes induced by amphiphilic agents and changes of ionic environment. Biochim Biophys Acta. 1968;163(4):494–500.

    Article  CAS  PubMed  Google Scholar 

  18. Sreekumar PG, Kannan R, Yaung J, Spee CK, Ryan SJ, Hinton DR. Protection from oxidative stress by methionine sulfoxide reductases in RPE cells. Biochem Biophys Res Commun. 2005;334(1):245–253.

    Article  CAS  PubMed  Google Scholar 

  19. Spickett CM, Ewen Smith W, Reglinski J, Wilson R, Walker JJ. Oxidation of erythrocyte glutathione by monocytes stimulated with interleukin-6 Analysis by 1H spin echo NMR. Clin Chim Acta. 1998;270(2):115–124.

    Article  PubMed  Google Scholar 

  20. Spickett CM, Reglinski J, Smith WE, Wilson R, Walker JJ, McKillop J. Erythrocyte glutathione balance and membrane stability during preeclampsia. Free Rad Biol Med. 1998;24(6):1049–1055.

    Article  CAS  PubMed  Google Scholar 

  21. Reglinski J, Hoey S, Smith WE, Sturrock RD. Cellular response to oxidative stress at sulfhydryl group receptor sites on the erythrocyte membrane. J Biol Chem. 1988;263(25):12360–12366.

    CAS  PubMed  Google Scholar 

  22. Reglinski J, Smith WE, Wilson R, et al. Clinical analysis in intact erythrocytes using 1H spin echo NMR. Clin Chim Acta. 1991;201(1–2):45–58.

    Article  CAS  PubMed  Google Scholar 

  23. Homer NZM, Reglinski J, Sowden R, Spickett CM, Wilson R, Walker JJ. Dimethylsulfoxide oxidizes glutathione in vitro and in human erythrocytes: kinetic analysis by 1H NMR. Cryobiol. 2005;50(3):317–324.

    Article  CAS  Google Scholar 

  24. Brown FF, Campbell ID, Kuchel PW, Rabenstein DC. Human erythrocyte metabolism studies by 1H Spin echo NMR. FEBS Lett. 1977;82(1):12–16.

    Article  CAS  PubMed  Google Scholar 

  25. Kennett EC, Bubb WA, Bansal P, Alewood P, Kuchel PW. NMR studies of exchange between intra- and extracellular glutathione in erythrocytes. Redox Rep. 2005;10(2):83–90.

    Article  CAS  PubMed  Google Scholar 

  26. Brummel MC. In search of physiological function of L-ergothioneine. Med Hypoth. 1985;18(4):351–370.

    Article  CAS  Google Scholar 

  27. Reglinski J, Smith WE, Sturrock RD. Spin-echo 1H NMR detected response of ergothioneine to oxidative stress in the intact human erythrocyte. Mag Res Med. 1988;6(2):217–223.

    Article  CAS  Google Scholar 

  28. Rae CD, Sweeney KJE, Kuchel PW. Stability and nonreactivity of ergothioneine in human erythrocytes studied by 1H NMR. Mag Res Med. 1993;29(6):826–829.

    Article  CAS  Google Scholar 

  29. Mitsuyama H, May JM. Uptake and antioxidant effects of ergothioneine in human erythrocytes. Clin Sci. 1999;97(4):407–411.

    Article  CAS  Google Scholar 

  30. Misiti F, Castagnola M, Zuppi C, Giardina B, Messana I. Role of ergothioneine on S-nitroglutathione catabolism. Biochem J. 2001;356(pt 3):799–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Franzoni F, Colognato R, Galetta F, et al. An in vitro study ono the free radical scavenging capacity of ergothioneine: comparison with reduced glutathione, uric acid and trolox. Biomed Pharmacother. 2006;60(8):453–457.

    Article  CAS  PubMed  Google Scholar 

  32. Aruoma OI, Whiteman M, England TG, Halliwell B. Antioxidant action of ergothioneine: assessment of its ability to scavenge peroxynitrite. Biochem Biophys Res Commun. 1997;231(2):389–391.

    Article  CAS  PubMed  Google Scholar 

  33. Akanmu D, Cecchini R, Aruoma OI, Halliwell B. The antioxidant action of ergothioneine. Arch Biochem Biophys. 1991;288(1):10–16.

    Article  CAS  PubMed  Google Scholar 

  34. Dahl TA, Midden WR, Hartman PE. Some prevalent biomolecules as defenses against singlet oxygen damage. Photochem Photobiol. 1988;47(3):357–362.

    Article  CAS  PubMed  Google Scholar 

  35. Turner E, Brewster JA, Simpson NAB, Walker JJ, Fisher J. Aromatic amino acid biomarkers of preeclampsia—A Nuclear Magnetic Resonance Investigation. Hypertens Pregnancy. 2008;27(3):225–235.

    Article  CAS  PubMed  Google Scholar 

  36. Turner E, Brewster JA, Simpson NAB, Walker JJ, Fisher J. Plasma from women with preeclampsia has a low lipid and ketone body content-a nuclear magnetic resonance study. Hypertens Pregnancy. 2007;26(3):329–342.

    Article  CAS  PubMed  Google Scholar 

  37. Kenny LC, Broadhurst D, Brown M, et al. Detection and identification of novel metabolomic biomarkers of preeclampsia. Reprod Sci. 2008;15(6):591–597.

    Article  CAS  PubMed  Google Scholar 

  38. Davey DA, MacGillivray I. The classification and definition of the hypertensive diseases of pregnancy. Am J Obstet Gynecol. 1988;158(4):892–898.

    Article  CAS  PubMed  Google Scholar 

  39. Brindle JT, Antti H, Holmes E, et al. Rapid and non-invasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nat Med. 2002;8(12):1439–1444.

    Article  CAS  PubMed  Google Scholar 

  40. Craig A, Cloarec O, Holmes E, Nicholson JK, Lindon JC. Scaling and normalization effects in NMR spectroscopic metabonomic data sets. Anal Chem. 2006;78(7):2262–2267.

    Article  CAS  PubMed  Google Scholar 

  41. Farrant RD, Lindon JC, Rahr E, Sweatman BC. An automatic data reduction and transfer method to aid pattern recognition analysis and classification of NMR spectra. J Pharm Biomed Anal. 1992;10(2–3):141–144.

    Article  CAS  PubMed  Google Scholar 

  42. Tomassini Miccheli A, Miccheli A, Clemete RD, et al. NMR-based meatbolic profiling of human hepatoma cells in relation to cell growth by culture media analysis. Biochim Biophys Acta. 2006;1760(11):1723–1731.

    Article  CAS  Google Scholar 

  43. Wang Y, Tang H, Holmes E, et al. Biochemical characterization of rat intestine development using high-resolution magic-angle-spinning 1H NMR spectroscopy and multivariate data analysis. J Proteome Res. 2005;4(4):1324–1329.

    Article  CAS  PubMed  Google Scholar 

  44. Bollard ME, Stanley EG, Lindon JC, Nicholson JK, Holmes E. NMR-based metabonomic approaches for evaluating physiological influences on biofluid composition. NMR Biomed. 2005;18(3):143–162.

    Article  CAS  PubMed  Google Scholar 

  45. Spicer J. Making Sense of Multivariate Data Analysis: An Intuitive Approach. Thousand Oaks, CA: Sage; 2005.

    Book  Google Scholar 

  46. Chang SL, Cloak CC, Malellari L, Chang L. The effects of repeated endotoxin exposure on rat brain metabolites as measured by ex vivo 1HMRS. J Neuroimmunol. 2005; 166(1–2):39–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Eriksson L, Jawoska J, Worth AP, Cronin MTD, McDowell RM, Gramatica P. Methods for reliability and uncertainty assessment and for applicability and evaluations of classification- and regression-based QSARS. Environ Health Perspect. 2003;111(10):1361–1375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Keun HC, Ebbels TMD, Antti H, et al. Improved analysis of multivariate data by variable stability scaling: application to NMR-based metabolic profiling. Anal Chim Acta. 2003;490(1–2):265–276.

    Article  CAS  Google Scholar 

  49. Wang Y, Tang H, Nicholson JK, Hylands PJ, Sampson J, Holmes E. A metabonomic strategy for the detection of the metabolic effects of chamomile (Matricaria recutita L.) ingestion. J Agric Food Chem. 2005;53(2):191–196.

    Article  CAS  PubMed  Google Scholar 

  50. Williams RE, Lenz EM, Lowdon JS, Rantalainen M, Wilson ID. The metabonomics of aging and development in the rat: an investigation into the effect of age of the profile of endogenous metabolites in the urine of male rats using 1H NMR and HPLC-TOF MS. Mol Biosyst. 2005;1(2):166–175.

    Article  CAS  PubMed  Google Scholar 

  51. Brindle JT, Nicholson JK, Schofield PM, Grainger DJ, Holmes E. Application of chemometrics to 1H NMR spectroscopic data to investigate a relatinship between human serum metabolic profiles and hypertension. Analyst. 2003;128(1):32–36.

    Article  CAS  PubMed  Google Scholar 

  52. Manly BFJ. Multivariate Statistical Methods: A Primer. 3rd ed. Boca Raton, FL: Chapman & Hall; 2005.

    Google Scholar 

  53. Press SJ, Wilson S. Choosing between logistic regression and discriminant analysis. J Am Stat Assoc. 1978;73(364):699–705.

    Article  Google Scholar 

  54. Pohar M, Blas M, Turk S. Comparison of logistic regression and linear discriminant analysis: a simulation study. Metodološki zvezki. 2004;1(1):143–161.

    Google Scholar 

  55. Salway JG. Metabolism at a Glance. 3rd ed. Oxford, UK: Blackwell Publishing Ltd; 2004.

    Google Scholar 

  56. Glew RH, Melah G, El-Nafaty AI, Brandt Y, Morris D, VanderJagt DJ. Plasma and urinary free amino acid concentrations in preeclamptic women in northern Nigeria. Clin Chim Acta. 2004;342(1–2):179–185.

    Article  CAS  PubMed  Google Scholar 

  57. Ramadan MA, Sammour MB, Ibrahim FK, Eisa EA. Total proteins and amino-acids of serum and placenta in normal and pre-eclamptic patients. Int J Biochem. 1973;4(19):29–35.

    Article  CAS  Google Scholar 

  58. Evans RW, Powers RW, Ness RB, et al. Maternal and fetal amino acid concentrations and fetal outcomes during preeclampsia. Reproduction. 2003;125(6):785–790.

    Article  CAS  PubMed  Google Scholar 

  59. Dong KK, Damaghi N, Kibitel J, Canning MT, Smiles KA, Yarosh DB. A comparison of the relative antioxidant potency of L-ergothioneine and idebenone. J Cosmet Dermatol. 2007;6(3):183–188.

    Article  PubMed  Google Scholar 

  60. Aydogan S, Yapislar H, Artis S, Aydogan B. Impaired erythrocytes deformability in H2O2-induced oxidative stress: protective effect of L-carnosine. Clin Hemor Microcirc. 2008; 39(1–4):93–98.

    Article  CAS  Google Scholar 

  61. Arzumanyan ES, Makhro AV, Tyulina OV, Boldyrev AA. Carnosine protects erythrocytes from the oxidative stress caused by homocysteic acid. Dokl Biochem Biophys. 2008;418:44–46.

    Article  CAS  PubMed  Google Scholar 

  62. Bisby RH, Morgan CG, Hamblett I, Gorman AA. Quenching of singlet oxygen by trolox, ascorbate, and amino acids: effects of pH and temperature. J Phys Chem A. 1999;103(37):7454–7459.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie Fisher PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, E., Brewster, J.A., Simpson, N.A.B. et al. Imidazole-Based Erythrocyte Markers of Oxidative Stress in Preeclampsia—An NMR Investigation. Reprod. Sci. 16, 1040–1051 (2009). https://doi.org/10.1177/1933719109340928

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719109340928

Key words

Navigation