Skip to main content

Advertisement

Log in

Local Uteroplacental Influences are Responsible for the Induction of Uterine Artery Myogenic Tone during Rat Pregnancy

  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Uterine artery constrictor responses to elevation of intraluminal pressure (myogenic tone) are considerably enhanced in late pregnant rats, although the underlying causes remain unknown. A single uterine horn ligation model was used to differentiate local from systemic influences, and to test the hypothesis that factors associated with the site of placentation, rather than systemic hormonal changes, are primarily involved in the induction of this adaptive process. Radial uterine arteries were dissected from the gravid and non-gravid uterine horns of late pregnant rats, cannulated, and pressurized. Changes in arterial diameter and smooth muscle [Ca2+]i in response to the elevation of intraluminal pressure were studied using intact and endothelium-denuded arteries loaded with the ratiometric Ca2+-sensitive dye fura-2. Elevations of pressure from 10 to 60 and 100 mm Hg resulted in passive arterial distention of arteries from nongravid horns with a minor change in [Ca2+]i. In contrast, arteries from gravid horns developed myogenic tone associated with a significant elevation in [Ca2+]i. Synchronous oscillations in [Ca2+]i and lumen diameter were frequently observed in vessels from gravid horns. Endothelial denudation augmented tone in the gravid horn but did not uncover myogenic tone in vessels from the nongravid horn. In summary, pregnancy-associated uterine artery myogenic behavior is due to an upregulation of calcium-handling mechanisms, occurs independently of the endothelium, and is induced by local uteroplacental influences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Poston L, McCarthy AL, Ritter JM. Control of vascular resistance in the maternal and feto-placental arterial beds. Pharmacol Ther. 1995;65(2):215–239.

    Article  CAS  PubMed  Google Scholar 

  2. Sladek SM, Magness RR, Conrad KP. Nitric oxide and pregnancy. Am J Physiol Regul Integr Comp Physiol. 1997;272(2 pt 2):R441–R463.

    Article  CAS  Google Scholar 

  3. Moll W. Structure adaptation and blood flow control in the uterine arterial system after hemochorial placentation. Eur J Obstet Gynecol Reprod Biol. 2003;110 Suppl 1:S19–S27.

    Article  PubMed  Google Scholar 

  4. Magness RR, Rosenfeld CR, Hassan A, Shaul PW. Endothelial vasodilator production by uterine and systemic arteries. I. Effects of ANG II on [PGI2] and NO in pregnancy. Am J Physiol Heart Circ Physiol. 1996;270(6 pt 2):H1914–H1923.

    Article  CAS  Google Scholar 

  5. Bird IM, Zhang L, Magness RR. Possible mechanisms underlying pregnancy-induced changes in uterine artery endothelial function. Am J Physiol Regul Integr Comp Physiol. 2003;284(2): R245–R258.

    Article  CAS  PubMed  Google Scholar 

  6. Osol G, Cipolla M. Interaction of myogenic and adrenergic mechanisms in isolated, pressurized uterine radial arteries from late-pregnant and nonpregnant rats. Am J Obstet Gynecol. 1993;168(2):697–705.

    Article  CAS  PubMed  Google Scholar 

  7. D’Angelo G, Osol G. Regional variation in resistance artery diameter responses to alpha-adrenergic stimulation during pregnancy. Am J Physiol Heart Circ Physiol. 1993;264(1 pt2)H78–H85.

    Article  Google Scholar 

  8. Xiao D, Pearce WJ, Zhang L. Pregnancy enhances endothelium-dependent relaxation of ovine uterine artery: role of NO and intracellular Ca2+. Am J Physiol Heart Circ Physiol. 2001;281(1):H183–H190. 9. Gokina NI, Goecks T. Upregulation of endothelial cell Ca2+ signaling contributes to pregnancy-enhanced vasodilation of rat uteroplacental arteries. Am J Physiol Heart Circ Physiol. 2006;290(5):H2124–H2135.

    Article  CAS  PubMed  Google Scholar 

  9. Gokina NI, Goecks T. Upregulation of endothelial cell Ca2+ signaling contributes to pregnancy-enhanced vasodilation of rat uteroplacental arteries. Am J Physiol Heart Circ Physiol. 2006;290(5):H2124–H2135

    Article  CAS  PubMed  Google Scholar 

  10. Veerareddy S, Cooke CL, Baker PN, Davidge ST. Vascular adaptations to pregnancy in mice: effects on myogenic tone. Am J Physiol Heart Circ Physiol. 2002;283(6):H2226–H2233.

    Article  CAS  PubMed  Google Scholar 

  11. Osol G, Mandala M. Maternal uterine vascular remodeling during pregnancy. Physiology (Bethesda). 2009;24:58–71.

    Google Scholar 

  12. Schubert R, Mulvany MJ. The myogenic response: established facts and attractive hypotheses. Clin Sci (Lond). 1999;96(4):313–326.

    Article  CAS  Google Scholar 

  13. Davis MJ, Hill MA. Signaling mechanisms underlying the vascular myogenic response. Physiological Rev. 1999;79(2):387–423.

    Article  CAS  Google Scholar 

  14. Hill MA, Zou H, Potocnik SJ, Meininger GA, Davis MJ. Invited review: arteriolar smooth muscle mechanotransduction: Ca2+ signaling pathways underlying myogenic reactivity. J Appl Physiol. 2001;91(2):973–983.

    Article  CAS  PubMed  Google Scholar 

  15. Osol G. Mechanotransduction by vascular smooth muscle. J Vasc Res. 1995;32(5):275–292.

    Article  CAS  PubMed  Google Scholar 

  16. Ledoux J, Werner ME, Brayden JE, Nelson MT. Calcium-activated potassium channels and the regulation of vascular tone. Physiology (Bethesda). 2006;21:69–78.

    CAS  Google Scholar 

  17. Brayden JE, Nelson MT. Regulation of arterial tone by activation of calcium-dependent potassium channels. Science. 1992;256(5056):532–535.

    Article  CAS  PubMed  Google Scholar 

  18. Cole WC, Chen TT, Clement-Chomienne O. Myogenic regulation of arterial diameter: role of potassium channels with a focus on delayed rectifier potassium current. Can J Physiol Pharmacol. 2005;83(8–9):755–765.

    Article  CAS  PubMed  Google Scholar 

  19. Osol G, Brekke JF, McElroy-Yaggy K, Gokina NI. Myogenic tone, reactivity, and forced dilatation: a three-phase model of in vitro arterial myogenic behavior. Am J Physiol Heart Circ Physiol. 2002;283(6):H2260–H2267.

    Article  CAS  PubMed  Google Scholar 

  20. Schubert R, Lidington D, Bolz SS. The emerging role of Ca2+ sensitivity regulation in promoting myogenic vasoconstriction. Cardiovasc Res. 2008;77(1):8–18.

    CAS  PubMed  Google Scholar 

  21. Telezhkin V, Goecks T, Bonev AD, Osol G, Gokina NI. Decreased function of voltage-gated potassium channels contributes to augmented myogenic tone of uterine arteries in late pregnancy. Am J Physiol Heart Circ Physiol. 2008;294(1):H272–H284.

    Article  CAS  PubMed  Google Scholar 

  22. Novak J, Ramirez RJ, Gandley RE, Sherwood OD, Conrad KP. Myogenic reactivity is reduced in small renal arteries isolated from relaxin-treated rats. Am J Physiol Regul Integr Comp Physiol. 2002;283(2):R349–R355.

    Article  CAS  PubMed  Google Scholar 

  23. Meyer MC, Brayden JE, McLaughlin MK. Characteristics of vascular smooth muscle in the maternal resistance circulation during pregnancy in the rat. Am J Obstet Gynecol. 1993;169(6):1510–1516.

    Article  CAS  PubMed  Google Scholar 

  24. Gokina NI, Mandala M, Osol G. Induction of localized differences in rat uterine radial artery behavior and structure during gestation. Am J Obstet Gynecol. 2003;189(5): 1489–1493.

    Article  PubMed  Google Scholar 

  25. Hilgers RH, Bergaya S, Schiffers PM, et al. Uterine artery structural and functional changes during pregnancy in tissue kallikrein-deficient mice. Arterioscler Thromb Vasc Biol. 2003;23(10):1826–1832.

    Article  CAS  PubMed  Google Scholar 

  26. Veerareddy S, Campbell ME, Williams SJ, Baker PN, Davidge ST. Myogenic reactivity is enhanced in rat radial uterine arteries in a model of maternal undernutrition. Am J Obstet Gynecol. 2004;191(1):334–339.

    Article  PubMed  Google Scholar 

  27. Kublickiene KR, Cockell AP, Nisell H, Poston L. Role of nitric oxide in the regulation of vascular tone in pressurized and perfused resistance myometrial arteries from term pregnant women. Am J Obstet Gynecol. 1997;177(5):1263–1269.

    Article  CAS  PubMed  Google Scholar 

  28. Fuller R, Barron C, Mandala M, Gokina N, Osol G. Predominance of local over systemic factors in uterine arterial remodeling during pregnancy. Reprod Sci. 2009;16(5):489–500.

    Article  PubMed  Google Scholar 

  29. Annibale DJ, Rosenfeld CR, Stull JT, Kamm KE. Protein content and myosin light chain phosphorylation in uterine arteries during pregnancy. Am J Physiol Cell Physiol. 1990; 259(3 pt 1):C484–C489.

    Article  CAS  Google Scholar 

  30. Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985;260(6):3440–3450.

    CAS  PubMed  Google Scholar 

  31. Knot HJ, Nelson MT. Regulation of arterial diameter and wall [Ca2+] in cerebral arteries of rat by membrane potential and intravascular pressure. J Physiol. 1998;508(pt 1): 199–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Harder DR. Pressure-dependent membrane depolarization in cat middle cerebral artery. Circ Res. 1984;55(2):197–202.

    Article  CAS  PubMed  Google Scholar 

  33. Brekke JF, Gokina NI, Osol G. Vascular smooth muscle cell stress as a determinant of cerebral artery myogenic tone. Am J Physiol Heart Circ Physiol. 2002;283(6):H2210–H2216.

    Article  CAS  PubMed  Google Scholar 

  34. Ramsey EM, Chez RA, Doppman JL. Radioangiographic measurement of the internal diameters of the uteroplacental arteries in rhesus monkeys. Am J Obstet Gynecol. 1979;135(2):247–251.

    Article  CAS  PubMed  Google Scholar 

  35. Osol G, Cipolla M. Pregnancy-induced changes in the three-dimensional mechanical properties of pressurized rat uteroplacental (radial) arteries. Am J Obstet Gynecol. 1993;168(1 pt 1):268–274.

    Article  CAS  PubMed  Google Scholar 

  36. Berridge MJ. Calcium signalling and cell proliferation. Bioessays. 1995;17(6):491–500.

    Article  CAS  PubMed  Google Scholar 

  37. Mandegar M, Fung YC, Huang W, Remillard CV, Rubin LJ, Yuan JX. Cellular and molecular mechanisms of pulmonary vascular remodeling: role in the development of pulmonary hypertension. Microvasc Res. 2004;68(2):75–103.

    Article  CAS  PubMed  Google Scholar 

  38. Platoshyn O, Golovina VA, Bailey CL, et al. Sustained membrane depolarization and pulmonary artery smooth muscle cell proliferation. Am J Physiol Cell Physiol. 2000;279(5): C1540–C1549.

    Article  CAS  PubMed  Google Scholar 

  39. Berk BC. Vascular smooth muscle growth: autocrine growth mechanisms. Physiol Rev. 2001;81(3):999–1030.

    Article  CAS  PubMed  Google Scholar 

  40. Landsberg JW, Yuan JX. Calcium and TRP channels in pulmonary vascular smooth muscle cell proliferation. News Physiol Sci. 2004;19:44–50.

    CAS  PubMed  Google Scholar 

  41. Cipolla MJ, Binder ND, Osol G. Myoendometrial versus placental uterine arteries: structural, mechanical, and functional differences in late-pregnant rabbits. Am J Obstet Gynecol. 1997;177(1):215–221.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia I. Gokina PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gokina, N.I., Kuzina, O.Y., Fuller, R. et al. Local Uteroplacental Influences are Responsible for the Induction of Uterine Artery Myogenic Tone during Rat Pregnancy. Reprod. Sci. 16, 1072–1081 (2009). https://doi.org/10.1177/1933719109340927

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719109340927

Key words

Navigation