Skip to main content

Advertisement

Log in

Maternal Protein Deprivation: Changes in Systemic Renin-Angiotensin System of the Mouse Fetus

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We tested the hypothesis that maternal protein deprivation during gestation results in changes in expression of the systemic renin-angiotensin system in fetal mice. Fetal weight was decreased significantly as a consequence of 50% maternal protein deprivation during second half of gestation. In fetal liver, angiotensinogen protein expression was reduced significantly despite a significant increase in messenger RNA (mRNA). In fetal kidneys, both mRNA and protein levels of renin were increased significantly. In the lungs, we observed a decrease in both angiotensin-converting enzyme I and II mRNA expression, whereas protein expression of both isoforms was increased significantly. The fetal heart showed significant increases in expression of angiotensin II type 1 (AT-1) and type 2 (AT-2) receptors mRNA. Protein expression of AT-1 receptors increased, while that of AT-2 receptors decreased. We conclude that maternal low-protein diet during gestation leads to significant changes in expression of the systemic reninangiotensin system in fetal mice and may be important in the genesis of hypertension in the adult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bagby SP. Developmental hypertension, nephrogenesis, and mother’s milk: programming the neonate. J Am Soc Nephrol. 2007;18(6):1626–1629.

    Article  Google Scholar 

  2. Brawley L, Itoh S, Torrens C, et al. Dietary protein restriction in pregnancy induces hypertension and vascular defects in rat male offspring. Pediatr Res. 2003;54(1):83–90.

    Article  CAS  Google Scholar 

  3. Langley-Evans SC, Welham SJ, Sherman RC, Jackson AA. Weanling rats exposed to maternal low-protein diets during discrete periods of gestation exhibit differing severity of hypertension. Clin Sci (Lond). 1996;91(5):607–615.

    Article  CAS  Google Scholar 

  4. Langley SC, Jackson AA. Increased systolic blood pressure in adult rats induced by fetal exposure to maternal low protein diets. Clin Sci (Lond). 1994;86(2):217–222.

    Article  CAS  Google Scholar 

  5. Manning J, Vehaskari VM. Low birth weight-associated adult hypertension in the rat. Pediatr Nephrol. 2001;16(5):417–422.

    Article  CAS  Google Scholar 

  6. Persson E, Jansson T. Low birth weight is associated with elevated adult blood pressure in the chronically catheterized guinea-pig. Acta Physiol Scand. 1992;145(2):195–196.

    Article  CAS  Google Scholar 

  7. Vehaskari VM, Aviles DH, Manning J. Prenatal programming of adult hypertension in the rat. Kidney Int. 2001;59(1):238–245.

    Article  CAS  Google Scholar 

  8. Garcia-Villalba P, Denkers ND, Wittwer CT, Hoff C, Nelson RD, Mauch TJ. Real-time PCR quantification of AT1 and AT2 angiotensin receptor mRNA expression in the developing rat kidney. Nephron Exp Nephrol. 2003; 94(4):e154–e159.

  9. Vehaskari VM, Woods LL. Prenatal programming of hypertension: lessons from experimental models. J Am Soc Nephrol. 2005;16(9):2545–2556.

    Article  CAS  Google Scholar 

  10. Gomez RA, Pupilli C, Everett AD. Molecular and cellular aspects of renin during kidney ontogeny. Pediatr Nephrol. 1991;5(1):80–87.

    Article  CAS  Google Scholar 

  11. Gomez-Sanchez EP, Gomez-Sanchez CE. Maternal hypertension and progeny blood pressure: role of aldosterone and 11beta-HSD. Hypertension. 1999;33(6):1369–1373.

    Article  CAS  Google Scholar 

  12. Vehaskari VM, Stewart T, Lafont D, Soyez C, Seth D, Manning J. Kidney angiotensin and angiotensin receptor expression in prenatally programmed hypertension. Am J Physiol Renal Physiol. 2004;287(2):F262–F267.

    Article  CAS  Google Scholar 

  13. Woods LL, Ingelfinger JR, Nyengaard JR, Rasch R. Maternal protein restriction suppresses the newborn renin-angiotensin system and programs adult hypertension in rats. Pediatr Res. 2001;49(4):460–467.

    Article  CAS  Google Scholar 

  14. Sherman RC, Langley-Evans SC. Antihypertensive treatment in early postnatal life modulates prenatal dietary influences upon blood pressure in the rat. Clin Sci (Lond). 2000; 98(3):269–275.

    Article  CAS  Google Scholar 

  15. Bogdarina I, Welham S, King PJ, Burns SP, Clark AJ. Epigenetic modification of the renin-angiotensin system in the fetal programming of hypertension. Circ Res. 2007;100(4): 520–526.

    Article  CAS  Google Scholar 

  16. Gheorghe CP, Mohan S, Oberg KC, Longo LD. Gene expression patterns in the hypoxic murine placenta: a role in epigenesis? Reprod Sci. 2007;14(3): 223–233.

    Article  CAS  Google Scholar 

  17. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45.

  18. Yajnik CS, Fall CH, Coyaji KJ, et al. Neonatal anthropometry: the thin-fat Indian baby. The Pune Maternal Nutrition Study. Int J Obes Relat Metab Disord. 2003;27(2):173–180.

    Article  CAS  Google Scholar 

  19. Yajnik CS, Fall CH, Vaidya U, et al. Fetal growth and glucose and insulin metabolism in four-year-old Indian children. Diabet Med. 1995;12(4):330–336.

    Article  CAS  Google Scholar 

  20. Law CM, Egger P, Dada O, et al. Body size at birth and blood pressure among children in developing countries. Int J Epide-miol. 2001;30(1):52–57.

    Article  CAS  Google Scholar 

  21. Willis MS, Buck JS. From Sudan to nebraska: Dinka and Nuer refugee diet dilemmas. J Nutr Educ Behav. 2007;39(5):273–280.

    Article  Google Scholar 

  22. Adam I, Babiker S, Mohmmed AA, Salih MM, Prins MH, Zaki ZM. Low body mass index, anaemia and poor perinatal outcome in a rural hospital in eastern Sudan. J Trop Pediatr. 2008;54(3):202–204.

    Article  Google Scholar 

  23. Gheorghe C, Goyal R, Holweger JD, Longo LD. Placental gene expression responses to maternal protein restriction in the mouse. Placenta, 30(5):411–417, 2009.

  24. Roseboom TJ, Van Der Meulen JH, Ravelli AC, et al. Blood pressure in adults after prenatal exposure to famine. J Hypertens. 1999;17(3):325–330.

    Article  CAS  Google Scholar 

  25. Barker DJ. Maternal nutrition, fetal nutrition, and disease in later life. Nutrition. 1997;13(9):807–813.

    Article  CAS  Google Scholar 

  26. Godfrey K, Robinson S, Barker DJ, Osmond C, Cox V. Maternal nutrition in early and late pregnancy in relation to placental and fetal growth. BM J. 1996;312(7028):410–414.

    Article  CAS  Google Scholar 

  27. Barker DJ. The origins of the developmental origins theory. J Intern Med. 2007;261(5):412–417.

    Article  CAS  Google Scholar 

  28. Barker DJ. Birth weight and hypertension. Hypertension. 2006;48(3):357–358.

    Article  CAS  Google Scholar 

  29. Barker DJ. In utero programming of cardiovascular disease. Theriogenology. 2000;53(2):555–574.

    Article  CAS  Google Scholar 

  30. Strahl BD, Ohba R, Cook RG, Allis CD. Methylation of his-tone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena. Proc Natl Acad Sci USA. 1999;96(26):14967–14972.

    Article  CAS  Google Scholar 

  31. Gopalakrishnan S, Van Emburgh BO, Robertson KD. DNA methylation in development and human disease. Mutat Res. 2008;647(1–2):30–38.

    Article  CAS  Google Scholar 

  32. Bulger M. Hyperacetylated chromatin domains: lessons from heterochromatin. J Biol Chem. 2005;280(23): 21689–21692.

    Article  CAS  Google Scholar 

  33. Zeng Y, Wagner EJ, Cullen BR. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell. 2002;9(6): 1327–1333.

    Article  CAS  Google Scholar 

  34. Gilbert JS, Ford SP, Lang AL, et al. Nutrient restriction impairs nephrogenesis in a gender-specific manner in the ovine fetus. Pediatr Res. 2007;61:42–47.

    Article  Google Scholar 

  35. Konje JC, Bell SC, Morton JJ, de Chazal R, Taylor DJ. Human fetal kidney morphometry during gestation and the relationship between weight, kidney morphometry and plasma active renin concentration at birth. Clin Sci (Lond). 1996;91(2):169–175.

    Article  CAS  Google Scholar 

  36. Kingdom JC, Hayes M, McQueen J, Howatson AG, Lindop GB. Intrauterine growth restriction is associated with persistent juxtamedullary expression of renin in the fetal kidney. Kidney Int. 1999;55(2):424–429.

    Article  CAS  Google Scholar 

  37. Kingdom JC, McQueen J, Connell JM, Whittle MJ. Fetal angiotensin II levels and vascular (type I) angiotensin receptors in pregnancies complicated by intrauterine growth retardation. Br J Obstet Gynaecol. 1993;100(5):476–482.

    Article  CAS  Google Scholar 

  38. McMullen S, Gardner DS, Langley-Evans SC. Prenatal programming of angiotensin II type 2 receptor expression in the rat. Br J Nutr. 2004;91(1):133–140.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence D. Longo MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goyal, R., Galffy, A., Field, S.A. et al. Maternal Protein Deprivation: Changes in Systemic Renin-Angiotensin System of the Mouse Fetus. Reprod. Sci. 16, 894–904 (2009). https://doi.org/10.1177/1933719109337260

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719109337260

Key words

Navigation