Skip to main content

Advertisement

Log in

Murine Xenograft Model for Human Uterine Fibroids: An In Vivo Imaging Approach

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Uterine fibroids are the most prevalent benign tumors in women of reproductive age. The current knowledge on the fibroid disease mechanism has derived from studies of the Eker rat model where a unique germ line defect in the tuberous sclerosis 2 (Tsc2) tumor suppressor gene leads to the development of leiomyosarcoma, leiomyoma, and renal cancer. To study fibroids of human origin, we sought to establish fibroid xenografts in immune-compromised mice. We determined that lentiviral-mediated transduction of a green fluorescence protein (GFP)-luciferase (LUC) fusion gene and bioluminescence-based whole animal imaging allowed for the monitoring of transplanted fibroid cells in mice. We used this in vivo imaging approach to test a series of transplantation protocols and found that only freshly dissociated fibroid cells, but not the fibroid-derived smooth muscle cells grown in ex vivo cultures, can generate stable xenografts in subcutaneous Matrigel implants. Formation of the fibroid-xenografts requires the implantation of 17β-estradiol-releasing pellets in the recipient mice. Furthermore, freshly dissociated myometrial cells do not form xenografts under the experimental conditions. The xenograft protocol developed from this study provides an avenue for investigating the pathogenesis and drug responses of human fibroids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cramer SF, Patel A. The nonrandom regional distribution of uterine leiomyomas: a clue to histogenesis? Hum Pathol. 1992;23(6): 635–638.

    Article  CAS  PubMed  Google Scholar 

  2. Olive DL. Analysis of clinical fertility trials: a methodologic review. Fertil Steril. 1986;45(2):157–171.

    Article  CAS  PubMed  Google Scholar 

  3. Morales AJ, Kettel LM. Quality of life assessment. Semin Reprod Endocrinol. 1996;14(2):155–159.

    Article  CAS  PubMed  Google Scholar 

  4. Dembek CJ, Pelletier EM, Isaacson KB, Spies JB. Payer costs in patients undergoing uterine artery embolization, hysterectomy, or myomectomy for treatment of uterine fibroids. J Vasc Interv Radiol. 2007;18(10):1207–1213.

    Article  PubMed  Google Scholar 

  5. Hartmann KE, Birnbaum H, Ben-Hamadi R, et al. Annual costs associated with diagnosis of uterine leiomyomata. Obstet Gynecol. 2006;108(4):930–937.

    Article  PubMed  Google Scholar 

  6. Linder D, Gartler SM. Glucose-6-phosphate dehydrogenase mosaicism: utilization as a cell marker in the study of leiomyomas. Science. 1965;150(692):67–69.

    Article  CAS  PubMed  Google Scholar 

  7. Wilson EA, Yang F, Rees ED. Estradiol and progesterone binding in uterine leiomyomata and in normal uterine tissues. Obstet Gynecol. 1980;55(1):20–24.

    CAS  PubMed  Google Scholar 

  8. Rein MS, Barbieri RL, Friedman AJ. Progesterone: a critical role in the pathogenesis of uterine myomas. Am J Obstet Gynecol. 1995;172(1 pt 1):14–18.

    Article  CAS  PubMed  Google Scholar 

  9. Andersen J, DyReyes VM, Barbieri RL, Coachman DM, Miksicek RJ. Leiomyoma primary cultures have elevated transcriptional response to estrogen compared with autologous myometrial cultures. J Soc Gynecol Investig. 1995;2(3): 542–551.

    Article  CAS  PubMed  Google Scholar 

  10. Ichimura T, Kawamura N, Ito F, et al. Correlation between the growth of uterine leiomyomata and estrogen and progesterone receptor content in needle biopsy specimens. Fertil Steril. 1998;70(5):967–971.

    Article  CAS  PubMed  Google Scholar 

  11. Vu K, Greenspan DL, Wu TC, Zacur HA, Kurman RJ. Cellular proliferation, estrogen receptor, progesterone receptor, and bcl-2 expression in GnRH agonist-treated uterine leiomyomas. Hum Pathol. 1998;29(4):359–363.

    Article  CAS  PubMed  Google Scholar 

  12. Mashal RD, Fejzo ML, Friedman AJ, et al. Analysis of androgen receptor DNA reveals the independent clonal origins of uterine leiomyomata and the secondary nature of cytogenetic aberrations in the development of leiomyomata. Genes Chromosomes Cancer. 1994;11(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  13. Wang T, Zhang X, Obijuru L, et al. A micro-RNA signature associated with race, tumor size, and target gene activity in human uterine leiomyomas. Genes Chromosomes Cancer. 2007;46(4):336–347.

    Article  CAS  PubMed  Google Scholar 

  14. Vanharanta S, Pollard PJ, Lehtonen HJ, et al. Distinct expression profile in fumarate-hydratase-deficient uterine fibroids. Hum Mol Genet. 2006;15(1):97–103.

    Article  CAS  PubMed  Google Scholar 

  15. Ingraham SE, Lynch RA, Surti U, et al. Identification and characterization of novel human transcripts embedded within HMGA2 in t(12;14)(ql5;q24.1) uterine leiomyoma. Mutat Res. 2006;602(1–2):43–53.

    Article  CAS  PubMed  Google Scholar 

  16. Everitt JI, Wolf DC, Howe SR, Goldsworthy TL, Walker C. Rodent model of reproductive tract leiomyomata. Clinical and pathological features. Am J Pathol. 1995;146(6): 1556–1567.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Yeung RS, Xiao GH, Jin F, Lee WC, Testa JR, Knudson AG. Predisposition to renal carcinoma in the Eker rat is determined by germ-line mutation of the tuberous sclerosis 2 (TSC2) gene. Proc Natl Acad Sci U S A. 1994;91(24):11413–11416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Howe SR, Gottardis MM, Everitt JI, Goldsworthy TL, Wolf DC, Walker C. Rodent model of reproductive tract leiomyomata. Establishment and characterization of tumor-derived cell lines. Am J Pathol. 1995;146(6):1568–1579.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wei J, Chiriboga L, Mizuguchi M, Yee H, Mittal K. Expression profile of tuberin and some potential tumorigenic factors in 60 patients with uterine leiomyomata. Mod Pathol. 2005;18(2):179–188.

    Article  CAS  PubMed  Google Scholar 

  20. Hassan MH, Eyzaguirre E, Arafa HM, Hamada FM, Salama SA, Al-Hendy A. Memy I: a novel murine model for uterine leiomyoma using adenovirus-enhanced human fibroid explants in severe combined immune deficiency mice. Am J Obstet Gynecol. 2008;199(2):156 el-e8.

  21. Legrand N, Weijer K, Spits H. Experimental model for the study of the human immune system: production and monitoring of “human immune system” Rag2-/-gamma c-/- mice. Methods Mol Biol. 2008;415:65–82.

    CAS  PubMed  Google Scholar 

  22. Rice BW, Cable MD, Nelson MB. In vivo imaging of light-emitting probes. J Biomed Opt. 2001;6(4):432–440.

    Article  CAS  PubMed  Google Scholar 

  23. Kuo C, Coquoz O, Troy TL, Xu H, Rice BW. Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging. J Biomed Opt. 2007;12(2):024007.

    Article  PubMed  CAS  Google Scholar 

  24. Shinkai Y, Rathbun G, Lam KP, et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell. 1992;68(5):855–867.

    Article  CAS  PubMed  Google Scholar 

  25. Soudais C, Shiho T, Sharara LI, et al. Stable and functional lymphoid reconstitution of common cytokine receptor gamma chain deficient mice by retroviral-mediated gene transfer. Blood. 2000;95(10):3071–3077.

    Article  CAS  PubMed  Google Scholar 

  26. Baenziger S, Tussiwand R, Schlaepfer E, et al. Disseminated and sustained HIV infection in CD34+ cord blood cell-transplanted Rag2-/-gamma c-/- mice. Proc Natl Acad Sci U S A. 2006;103(43):15951–15956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Traggiai E, Chicha L, Mazzucchelli L, et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science. 2004;304(5667):104–107.

    Article  CAS  PubMed  Google Scholar 

  28. D’Hallewin MA, El Khatib S, Leroux A, Bezdetnaya L, Guillemin F. Endoscopic confocal fluorescence microscopy of normal and tumor bearing rat bladder. J Urol. 2005; 174(2):736–740.

    Article  PubMed  Google Scholar 

  29. Tanaka M, Gee JR, De La Cerda J, et al. Noninvasive detection of bladder cancer in an orthotopic murine model with green fluorescence protein cytology. J Urol. 2003;170(3): 975–978.

    Article  PubMed  Google Scholar 

  30. Bukowski EJ, Bright FV. Minimizing urine autofluorescence under multi-photon excitation conditions. Appl Spectrosc. 2004;58(9):1101–1105.

    Article  CAS  PubMed  Google Scholar 

  31. Guamaccia MM, Rein MS. Traditional surgical approaches to uterine fibroids: abdominal myomectomy and hysterectomy. Clin Obstet Gynecol. 2001;44(2):385–400.

    Article  Google Scholar 

  32. Yeh J, Rein M, Nowak R. Presence of messenger ribonucleic acid for epidermal growth factor (EGF) and EGF receptor demonstrable in monolayer cell cultures of myometria and leiomyomata. Fertil Steril. 1991;56(5):997–1000.

    Article  CAS  PubMed  Google Scholar 

  33. Giudice LC, Irwin JC, Dsupin BA, et al. Insulin-like growth factor (IGF), IGF binding protein (IGFBP), and IGF receptor gene expression and IGFBP synthesis in human uterine leiomyomata. Hum Reprod. 1993;8(11):1796–1806.

    Article  CAS  PubMed  Google Scholar 

  34. Lethaby AE, Vollenhoven BJ. An evidence-based approach to hormonal therapies for premenopausal women with fibroids. Best Pract Res Clin Obstet Gynaecol. 2008;22(2):307–331.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Y. J. Wang PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suo, G., Sadarangani, A., LaMarca, B. et al. Murine Xenograft Model for Human Uterine Fibroids: An In Vivo Imaging Approach. Reprod. Sci. 16, 827–842 (2009). https://doi.org/10.1177/1933719109336615

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719109336615

Key words

Navigation