Skip to main content

Advertisement

Log in

Predominance of Local Over Systemic Factors in Uterine Arterial Remodeling During Pregnancy

  • Articles
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

This study used a rat model in which pregnancy was surgically restricted to one uterine horn to differentiate between local (fetoplacental) and systemic (endocrine) influences on uterine vascular remodeling during pregnancy. Sprague-Dawley rats with single-horn pregnancies were studied on day 20/22 of gestation and compared to age-matched nonpregnant and late-pregnant controls. The morphology (axial length, lumen diameter, wall thickness) of the main uterine artery and of smaller arcuate vessels showed that vascular growth was dramatically increased in the pregnant versus nonpregnant horn, (P < .05). Arcuate artery wall thickness increased in the nonpregnant horn (compared to nonpregnant controls, P < .05), suggesting a limited role for systemic hormonal influences on vascular remodeling. Notably, animals with only one functional horn compensated by increasing the average number of implantation sites per horn from 7.6 to 12.9, thereby maintaining essentially normal litter size without any reduction in fetal or placental weights. These results demonstrate unequivocally that local rather than systemic influences play the dominant role in uterine vascular gestational remodeling of both large and small uterine arteries, and reveal a significant adaptive process that maintains relatively normal fecundity in spite of surgical restriction of normal bilateral pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Assali NS, Nuwayhid B, Brinkman CR 3rd, Tabsh K, Erkkola R, Ushioda E. Autonomic control of the pelvic circulation: in vivo and in vitro studies in pregnant and nonpregnant sheep. Am J Obstet Gynecol 1981;141: 873–884.

    Article  CAS  Google Scholar 

  2. Forbes TR, Taku E. Vein size in intact and hysterectomized mice during the estrous cycle and pregnancy. Anat Rec. 1975;182:61–65.

    Article  CAS  Google Scholar 

  3. Griendling KK, Fuller EO, Cox RH. Pregnancy-induced changes in sheep uterine and carotid arteries. Am J Physiol. 1985;248(5 pt 2):H658–H665.

    CAS  PubMed  Google Scholar 

  4. Johnson RL, Gilbert M, Meschia G, Battaglia FC. Cardiac output distribution and uteroplacental blood flow in the pregnant rabbit: a comparative study. Am J Obstet Gynecol. 1985;151:682–686.

    Article  CAS  Google Scholar 

  5. Nienartowicz A, Link S, Moll W. Adaptation of the uterine arcade in rats to pregnancy. J Dev Physiol. 1989;12:101–108.

    CAS  PubMed  Google Scholar 

  6. Whitney EA, Ducsay CA, Valenzuela GJ. Is uterine blood flow controlled locally or systemically in the pregnant rabbit? Am] Obstet Gynecol. 1993;169:1507–1509.

    Article  CAS  Google Scholar 

  7. D’Angelo G, Osol G. Regional variation in resistance artery diameter responses to alpha-adrenergic stimulation during pregnancy. Am] Physiol. 1993;264(1 pt 2):H78–H85.

    Google Scholar 

  8. Osol G, Cipolla M. Interaction of myogenic and adrenergic mechanisms in isolated, pressurized uterine radial arteries from late-pregnant and non-pregnant rats. Am J Obstet Gynecol. 1993;168:697–705.

    Article  CAS  Google Scholar 

  9. Osol G, Cipolla M. Pregnancy-induced changes in the three-dimensional mechanical properties of pressurized rat uteroplacental (radial) arteries. Am J Obstet Gynecol. 1993; 168(1 pt l):268–274.

    Article  CAS  Google Scholar 

  10. St-Louis J, Pare H, Sicotte B, Brochu M. Increased reactivity of rat uterine arcuate artery throughout gestation and postpartum. Am J Physiol. 1997;273(3 pt 2):H1148–H1153.

    CAS  PubMed  Google Scholar 

  11. Moll W, Gotz R. Pressure-diameter curves of mesometrial arteries of guinea pigs demonstrate a non-muscular, oestrogen-inducible mechanism of lumen regulation. Pflugers Arch. 1985;404:332–336.

    Article  CAS  Google Scholar 

  12. Kapadia SE, Forbes TR. The rapid response of ovarian and uterine veins of mice to sex hormones. Yale J Biol Med. 1979;52:419–422.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Verkeste CM, Slangen BF, Daemen M, et al. The extent of trophoblast invasion in the preplacental vasculature of the guinea-pig. Placenta. 1998;19:49–54.

    Article  CAS  Google Scholar 

  14. Rodbard S. Vascular caliber. Cardiology. 1975;60:4–49.

    Article  CAS  Google Scholar 

  15. Langille BL, O’Donnell F. Reductions in arterial diameter produced by chronic decreases in blood flow are endothe-lium-dependent. Science. 1986;231:405–407.

    Article  CAS  Google Scholar 

  16. Ben Driss A, Benessiano J, Poitevin P, Levy BI, Michel JB. Arterial expansive remodeling induced by high flow rates. Am J Physiol. 1997;272(2 pt 2):H851–H858.

    CAS  PubMed  Google Scholar 

  17. Masuda H, Kawamura K, Sugiyama T, Kamiya A. Effects of endothelial denudation in flow-induced arterial dilatation. Front Med Biol Eng. 1993;5:57–62.

    CAS  PubMed  Google Scholar 

  18. van der Heijden OW, Essers YP, Fazzi G, Peeters LL, De Mey JG, van Eys GJ. Uterine artery remodeling and reproductive performance are impaired in endothelial nitric oxide synthase-deficient mice. Biol Reprod. 2005;72:1161–1168.

    Article  Google Scholar 

  19. Kristek F, Gerova M, Devat L, Varga I. Remodelling of septal branch of coronary artery and carotid artery in L-NAME treated rats. Physiol Res. 1996;45:329–333.

    CAS  PubMed  Google Scholar 

  20. Osol G, Celia G, Gokina N, et al. Placental growth factor is a potent vasodilator of rat and human resistance arteries. Am J Physiol Heart Circ Physiol. 2008;294:H1381–H1387.

    Article  CAS  Google Scholar 

  21. Keyes LE, Moore LG, Walchak SJ, Dempsey EC. Pregnancy-stimulated growth of vascular smooth muscle cells: importance of protein kinase C-dependent synergy between estrogen and platelet-derived growth factor. J Cell Physiol. 1996;166:22–32.

    Article  CAS  Google Scholar 

  22. van der Heijden OW, Essers YP, Spaanderman ME, De Mey JG, van Eys GJ, Peeters LL. Uterine artery remodeling in pseudopregnancy is comparable to that in early pregnancy. Biol Reprod. 2005;73:1289–1293.

    Article  Google Scholar 

  23. Del Campo CH, Ginther OJ. Vascular anatomy of the uterus and ovaries and the unilateral luteolytic effect of the uterus: guinea pigs, rats, hamsters, and rabbits. Am J Vet Res. 1972;33:2561–2578.

    PubMed  Google Scholar 

  24. Krzymowski T, Kotwica J, Stefanczyk S, Czamocki J, Debek J. A subovarian exchange mechanism for the counter-current transfer of ovarian steroid hormones in the pig. J Reprod Fertil. 1982;65:457–465.

    Article  CAS  Google Scholar 

  25. Krzymowski T, Kotwica J, Stefanczyk S, Debek J, Czamocki J. Steroid transfer from the ovarian vein to the ovarian artery in the sow. J Reprod Fertil. 1982;65:451–456.

    Article  CAS  Google Scholar 

  26. Mapletoft RJ, Del Campo MR, Ginther OJ. Unilateral luteotropic effect of uterine venous effluent of a gravid uterine horn in sheep. Proc Soc Exp Biol Med. 1975;150:129–133.

    Article  CAS  Google Scholar 

  27. Mapletoft RJ, Ginther OJ. Adequacy of main uterine vein and the ovarian artery in the local venoarterial pathway for uterine-induced luteolysis in ewes. Am J Vet Res. 1975;36:957–963.

    CAS  PubMed  Google Scholar 

  28. Celia G, Osol G. Uterine venous permeability in the rat is altered in response to pregnancy, vascular endothelial growth factor, and venous constriction. Endothelium. 2005;12:81–88.

    Article  CAS  Google Scholar 

  29. Celia G, Osol G. Mechanism of VEGF-induced uterine venous hyperpermeability. J Vase Res. 2005;42:47–54.

    Article  CAS  Google Scholar 

  30. Forbes TR, Kapadia SE. Specific response of ovarian and uterine veins of mice to sex hormones. Am J Anat. 1976;147:325–328.

    Article  CAS  Google Scholar 

  31. Knight JW, Bazer FW, Thatcher WW, Franke DE, Wallace HD. Conceptus development in intact and unilaterally hysterectomized-ovariectomized gilts: interrelations among hormonal status, placental development, fetal fluids and fetal growth. J Anim Sci. 1977;44:620–637.

    Article  CAS  Google Scholar 

  32. Wu MC, Hentzel MD, Dziuk PJ. Relationships between uterine length and number of fetuses and prenatal mortality in pigs. J Anim Sci. 1987;65:762–770.

    CAS  Google Scholar 

  33. Thorbert G, Aim P, Owman C, Sjoberg NO, Sporrong B. Regional changes in structural and functional integrity of myometrial adrenergic nerves in pregnant guinea-pig, and their relationship to the localization of the conceptus. Acta Physiol Scand. 1978;103:120–131.

    Article  CAS  Google Scholar 

  34. Waddell BJ, Burton PJ. Full induction of rat myometrial 11 beta-hydroxysteroid dehydrogenase type 1 in late pregnancy is dependent on intrauterine occupancy. Biol Reprod. 2000;62:1005–1009.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Osol PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuller, R., Barron, C., Mandala, M. et al. Predominance of Local Over Systemic Factors in Uterine Arterial Remodeling During Pregnancy. Reprod. Sci. 16, 489–500 (2009). https://doi.org/10.1177/1933719108329816

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719108329816

Key words

Navigation