Skip to main content

Advertisement

Log in

Mechanisms of Leukocyte Accumulation and Activation in Chorioamnionitis: Interleukin 1β and Tumor Necrosis Factor Α Enhance Colony Stimulating Factor 2 Expression in Term Decidua

  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Chorioamnionitis is a major cause of prematurity as well as perinatal morbidity and mortality. The present study observed a marked increase in immunohisto chemical staining for Colony Stimulating Factor 2 (CSF2; also known as granulocyte macrophage-colony stimulating factor), a potent neutrophil and macrophage chemoattractant and activator, in the decidua of patients with CAM compared with controls (n = 8; P = .001). To examine the regulation of this CSF2, cultured decidual cells primed with estradiol (E2) or E2 plus medroxyprogesterone acetate, were exposed to tumor necrosis factor-a or interleukin–1β and secreted CSF2 measured by ELISA. Levels of CSF2 in E2 plus MPA-treated cultures increased 18- and 245-fold following treatment with TNF or IL1B (n = 7, P < .05). Quantitative RT-PCR demonstrated parallel changes in mRNA levels. This study reveals that CSF2 is strongly expressed in decidua from patients with CAM and indicates TNF or IL1B as important regulators of CAM-related decidual leukocyte infiltration and activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hamilton BE, Martin JA, Sutton PD. Births: preliminary data for 2003. Natl Vital Stat Rep. 2004;53:1–17.

    CAS  PubMed  Google Scholar 

  2. Mueller-Heubach E, Rubinstein DN, Schwarz SS. Histologic chorioamnionitis and preterm delivery in different patient populations. Obstet Gynecol. 1990;75:622–626.

    CAS  PubMed  Google Scholar 

  3. Cassell G, Hauth J, Andrews W, Cutter G, Goldenberg R. Chorioamnion colonization: correlation with gestational age in women delivered following spontaneous labor versus indicated delivery [abstract]. Am J Obstet Gynecol. 1993;168:425.

    Google Scholar 

  4. Guzick DS, Winn K. The association of chorioamnionitis with preterm delivery. Obstet Gynecol. 1985;65:11–16.

    CAS  PubMed  Google Scholar 

  5. Goldenberg RL, Hauth JC, Andrews WW. Intrauterine infection and preterm delivery. N Engl J Med. 2000;342:1500–1507.

    Article  CAS  PubMed  Google Scholar 

  6. So T, Ito A, Sato T, Mori Y, Hirakawa S. Tumor necrosis factor-alpha stimulates the biosynthesis of matrix metalloprotei-nases and plasminogen activator in cultured human chorionic cells. Biol Reprod. 1992;46:772–778.

    Article  CAS  PubMed  Google Scholar 

  7. Van Meir CA, Sangha RK, Walton JC, Matthews SG, Keirse MJ, Challis JR. Immunoreactive 15-hydroxypro-staglandin dehydrogenase (PGDH) is reduced in fetal membranes from patients at preterm delivery in the presence of infection. Placenta. 1996;17:291–297.

    Article  PubMed  Google Scholar 

  8. Lei H, Furth EE, Kalluri R, et al. A program of cell death and extracellular matrix degradation is activated in the amnion before the onset of labor. J Clin Invest. 1996;98:1971–1978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McLaren J, Taylor DJ, Bell SC. Prostaglandin E(2)-dependent production of latent matrix metalloproteinase–9 in cultures of human fetal membranes. Mol Hum Reprod. 2000;6:1033–1040.

    Article  CAS  PubMed  Google Scholar 

  10. Challis JR, Lye SJ, Gibb W, Whittle W, Patel F, Alfaidy N. Understanding preterm labor. Ann N Y Acad Sci. 2001;943:225–234.

    Article  CAS  PubMed  Google Scholar 

  11. Arechavaleta-Velasco F, Ogando D, Parry S, Vadillo-Ortega F. Production of matrix metalloproteinase–9 in lipopolysaccharide-stimulated human amnion occurs through an autocrine and paracrine proinflammatory cytokine-dependent system. Biol Reprod. 2002;67:1952–1958.

    Article  CAS  PubMed  Google Scholar 

  12. Fortunato SJ, Menon R, Lombardi SJ. Role of tumor necrosis factor-alpha in the premature rupture of membranes and preterm labor pathways. Am J Obstet Gynecol. 2002;187:1159–1162.

    Article  CAS  PubMed  Google Scholar 

  13. Benirschke K, Kaufmann P. Pathology of the Human Placenta. New York, NY: Springer; 2000:591–659.

    Book  Google Scholar 

  14. Matsubara S, Yamada T, Minakami H, Watanabe T, Takizawa T, Sato I. Polymorphonuclear leukocytes in the fetal membranes are activated in patients with preterm delivery: ultrastructural and enzyme-histochemical evidence. Placenta. 1999;20:185–188.

    Article  CAS  PubMed  Google Scholar 

  15. Eis AL, Brockman DE, Myatt L. Immunolocalization of the inducible nitric oxide synthase isoform in human fetal membranes. Am J Reprod Immunol. 1997;38:289–294.

    Article  CAS  PubMed  Google Scholar 

  16. Saji F, Samejima Y, Kamiura S, Sawai K, Shimoya K, Kimura T. Cytokine production in chorioamnionitis. J Reprod Immunol. 2000;47:185–196.

    Article  CAS  PubMed  Google Scholar 

  17. Lockwood CJ, Arcuri F, Toti P, et al. Tumor necrosis factor-alpha and interleukin-lbeta regulate interleukin–8 expression in third trimester decidual cells: implications for the genesis of chorioamnionitis. Am J Pathol. 2006;169:1294–1302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lockwood CJ, Matta P, Krikun G, et al. Regulation of monocyte chemoattractant protein–1 expression by tumor necrosis factor-alpha and interleukin-lbeta in first trimester human decidual cells: implications for preeclampsia. Am J Pathol. 2006;168:445–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Arcuri F, Buchwalder L, Toti P, et al. Differential regulation of colony stimulating factor 1 and macrophage migration inhibitory factor expression by inflammatory cytokines in term decidua: implications for macrophage trafficking at the fetal-maternal interface. Biol Reprod. 2006;76:433–439.

    Article  PubMed  CAS  Google Scholar 

  20. Burgess AW, Metcalf D. The nature and action of granulocyte-macrophage colony stimulating factors. Blood. 1980;56:947–958.

    Article  CAS  PubMed  Google Scholar 

  21. Gomez-Cambronero J, Horn J, Paul CC, Baumann MA. Granulocyte-macrophage colony-stimulating factor is a chemoattractant cytokine for human neutrophils: involvement of the ribosomal p70 S6 kinase signaling pathway. J Immunol. 2003;171:6846–6855.

    Article  CAS  PubMed  Google Scholar 

  22. Wang JM, Colella S, Allavena P, Mantovani A. Chemotactic activity of human recombinant granulocyte-macrophage colony-stimulating factor. Immunology. 1987;60:439–444.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. DiPersio JF, Billing P, Williams R, Gasson JC. Human granulocyte-macrophage colony-stimulating factor and other cytokines prime human neutrophils for enhanced arachidonic acidrelease and leukotriene B4 synthesis. J Immunol. 1988;140:4315–4322.

    Google Scholar 

  24. Gadish M, Kletter Y, Flidel O, Nagler A, Slavin S, Fabian I. Effects of recombinant human granulocyte and granulocyte-macrophage colony-stimulating factors on neutrophil function following autologous bone marrow transplantation, Leuk Res. 1991;15:1175–1182.

    Article  CAS  PubMed  Google Scholar 

  25. Fleischmann J, Golde DW, Weisbart RH, Gasson JC. Granulocyte-macrophage colony-stimulating factor enhances phagocytosis of bacteria by human neutrophils. Blood. 1986;68:708–711.

    Article  CAS  PubMed  Google Scholar 

  26. Coleman DL, Chodakewitz JA, Bartiss AH, Mellors JW. Granulocyte-macrophage colony-stimulating factor enhances selective effector functions of tissue-derived macrophages. Blood. 1988;72:573–578.

    Article  CAS  PubMed  Google Scholar 

  27. Wing EJ, Magee DM, Whiteside TL, Kaplan SS, Shadduck RK. Recombinant human granulocyte/macrophage colony-stimulating factor enhances monocyte cytotoxicity and secretion of tumor necrosis factor alpha and interferon in cancer patients. Blood. 1989;73:643–646.

    Article  CAS  PubMed  Google Scholar 

  28. Hamilton JA, Stanley ER, Burgess AW, Shadduck RK. Stimulation of macrophage plasminogen activator activity by colony-stimulating factors. J Cell Physiol. 1980;103:435–445.

    Article  CAS  PubMed  Google Scholar 

  29. Perkins RC, Vadhan-Raj S, Scheule RK, Hamilton R, Holian A. Effects of continuous high dose rhGM-CSF infusion on human monocyte activity. Am J Hematol. 1993;43:279–285.

    Article  CAS  PubMed  Google Scholar 

  30. Arici A, Marshburn PB, MacDonald PC, Dombrowski RA. Progesterone metabolism in human endometrial stromal and gland cells in culture. Steroids. 1999;64:530–534.

    Article  CAS  PubMed  Google Scholar 

  31. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254.

    Article  CAS  PubMed  Google Scholar 

  32. Janeway CA, Travers P, Walport M, Shlomchik M. Innate Immunity. Immunobiology: The Immune System in Health and Disease. New York: Garland Science Publishing; 2006;37–100.

  33. Amtzen KJ, Egeberg K, Rahimipoor S, Vatten L, Austgulen R. LPS mediated production of IL-1, PGE2 and PGF2alpha from term decidua involves tumour necrosis factor and tumour necrosis factor receptor p55. J Reprod Immunol. 1999;45:113–125.

    Google Scholar 

  34. Menon R, Swan KF, Lyden TW, Rote NS, Fortunato SJ. Expression of inflammatory cytokines (interleukin–1 beta and interleukin–6) in amniochorionic membranes. Am J Obstet Gynecol. 1995;172:493–500.

    Article  CAS  PubMed  Google Scholar 

  35. Zaga V, Estrada-Gutierrez G, Beltran-Montoya J, Maida-Claros R, Lopez-Vancell R, Vadillo-Ortega F. Secretions of interleukin-lbeta and tumor necrosis factor alpha by whole fetal membranes depend on initial interactions of amnion or choriodecidua with lipopolysaccharides or group B streptococci. Biol Reprod. 2004;71:1296–1302.

    Article  CAS  PubMed  Google Scholar 

  36. Vince G, Shorter S, Starkey P, et al. Localization of tumour necrosis factor production in cells at the materno/fetal interface in human pregnancy. Clin Exp Immunol. 1992;88:174–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Leizer T, Cebon J, Layton JE, Hamilton JA. Cytokine regulation of colony-stimulating factor production in cultured human synovial fibroblasts: I. Induction of GM-CSF and G-CSF production by interleukin–1 and tumor necrosis factor. Blood. 1990;76:1989–1996.

    Article  CAS  PubMed  Google Scholar 

  38. Cromwell O, Hamid Q, Corrigan CJ, et al. Expression and generation of interleukin–8, IL-6 and granulocyte-macrophage colony-stimulating factor by bronchial epithelial cells and enhancement by IL-1 beta and tumour necrosis factor-alpha. Immunology. 1992;77:330–337.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sieff CA, Niemeyer CM, Mentzer SJ, Faller DV. Interleukin–1, tumor necrosis factor, and the production of colony-stimulating factors by cultured mesenchymal cells. Blood. 1988;72:1316–1323.

    Article  CAS  PubMed  Google Scholar 

  40. Bennett WA, Lagoo-Deenadayalan S, Brackin MN, Hale E, Cowan BD. Cytokine expression by models of human tropho-blast as assessed by a semiquantitative reverse transcription-polymerase chain reaction technique. Am J Reprod Immunol. 1996;36:285–294.

    Article  CAS  PubMed  Google Scholar 

  41. Stallmach T, Hebisch G, Joller H, Kolditz P, Engelmann M. Expression pattern of cytokines in the different compartments of the feto-maternal unit under various conditions. Reprod Fertil Dev. 1995;7:1573–1580.

    Article  CAS  PubMed  Google Scholar 

  42. Robertson SA, Mayrhofer G, Seamark RF. Uterine epithelial cells synthesize granulocyte-macrophage colony-stimulating factor and interleukin–6 in pregnant and nonpregnant mice. Biol Reprod. 1992;46:1069–1079.

    Article  CAS  PubMed  Google Scholar 

  43. Tremellen KP, Seamark RF, Robertson SA. Seminal transforming growth factor betal stimulates granulocyte-macrophage colony-stimulating factor production and inflammatory cell recruitment in the murine uterus. Biol Reprod. 1998;58:1217–1225.

    Article  CAS  PubMed  Google Scholar 

  44. Gervasi MT, Chaiworapongsa T, Naccasha N, Blackwell S, Yoon BH, Maymon E, et al. Phenotypic and metabolic characteristics of maternal monocytes and granulocytes in preterm labor with intact membranes. Am J Obstet Gynecol. 2001;185:1124–1129.

    Article  CAS  PubMed  Google Scholar 

  45. Parry S, Strauss JF 3rd. Premature rupture of the fetal membranes. N Engl J Med. 1998;338:663–670.

    Article  CAS  PubMed  Google Scholar 

  46. Vadillo-Ortega F, Gonzalez-Avila G, Karchmer S, Cruz NM, Ayala-Ruiz A, Lama MS. Collagen metabolism in premature rupture of amniotic membranes. Obstet Gynecol. 1990;75:84–88.

    CAS  PubMed  Google Scholar 

  47. Draper D, McGregor J, Hall J, et al. Elevated protease activities in human amnion and chorion correlate with preterm premature rupture of membranes. Am J Obstet Gynecol. 1995;173:1506–1512.

    Article  CAS  PubMed  Google Scholar 

  48. Witko-Sarsat V, Rieu P, Descamps-Latscha B, Lesavre P, Halbwachs-Mecarelli L. Neutrophils: molecules, functions and pathophysiological aspects. Lab Invest. 2000;80:617–653.

    Article  CAS  PubMed  Google Scholar 

  49. Welgus HG, Campbell EJ, Cury JD, Eisen AZ, Senior RM, Wilhelm SM, et al. Neutral metalloproteinases produced by human mononuclear phagocytes. Enzyme profile, regulation, and expression during cellular development. J Clin Invest. 1990;86:1496–1502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick Schatz PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arcuri, F., Toti, P., Buchwalder, L. et al. Mechanisms of Leukocyte Accumulation and Activation in Chorioamnionitis: Interleukin 1β and Tumor Necrosis Factor Α Enhance Colony Stimulating Factor 2 Expression in Term Decidua. Reprod. Sci. 16, 453–461 (2009). https://doi.org/10.1177/1933719108328609

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719108328609

Key words

Navigation