Skip to main content

Advertisement

Log in

Decidualized Human Endometrial Stromal Cells Mediate Hemostasis, Angiogenesis, and Abnormal Uterine Bleeding

  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Factor VII binds trans-membrane tissue factor to initiate hemostasis by forming thrombin. Tissue factor expression is enhanced in decidualized human endometrial stromal cells during the luteal phase. Long-term progestin only contraceptives elicit: 1) abnormal uterine bleeding from fragile vessels at focal bleeding sites, 2) paradoxically high tissue factor expression at bleeding sites; 3) reduced endometrial blood flow promoting local hypoxia and enhancing reactive oxygen species levels; and 4) aberrant angiogenesis reflecting increased stromal cell-expressed vascular endothelial growth factor, decreased Angiopoietin-1 and increased endothelial cell-expressed Angiopoietin-2. Aberrantly high local vascular permeability enhances circulating factor VII to decidualized stromal cell-expressed tissue factor to generate excess thrombin. Hypoxia-thrombin interactions augment expression of vascular endothelial growth factor and interleukin-8 by stromal cells. Thrombin, vascular endothelial growth factor and interlerukin-8 synergistically augment angiogenesis in a milieu of reactive oxygen species-induced endothelial cell activation. The resulting enhanced vessel fragility promotes abnormal uterine bleeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bell S. Contraception and mechanisms of endometrial bleeding. In: D’Arcangues C, Fraser I, Newton J, Odlind V, eds. Contraception and Mechanisms of Endometrial Bleeding. Cambridge: Cambridge University Press; 1990:188.

    Google Scholar 

  2. Tabanelli S, Tang B, Gurpide E. In vitro decidualization of human endometrial stromal cells. J Steroid Biochem Mol Biol. 1992;42:337–344.

    Article  CAS  PubMed  Google Scholar 

  3. Wynn RM. Ultrastructural development of the human decidua. Am J Obstet Gynecol. 1974;118:652–670.

    Article  CAS  PubMed  Google Scholar 

  4. Lockwood CJ, Nemerson Y, Guller S, et al. Progestational regulation of human endometrial stromal cell tissue factor expression during decidualization. J Clin Endocrinol Metab. 1993;76:231–236.

    CAS  PubMed  Google Scholar 

  5. Lockwood CJ, Krikun G, Papp C, et al. The role of progestationally regulated stromal cell tissue factor and type-1 plasminogen activator inhibitor (PAI-1) in endometrial hemostasis and menstruation. Ann N Y Acad Sci. 1994;734: 57–79.

    Article  CAS  PubMed  Google Scholar 

  6. Runic R, Schatz F, Krey L, et al. Alterations in endometrial stromal cell tissue factor protein and messenger ribonucleic acid expression in patients experiencing abnormal uterine bleeding while using Norplant-2 contraception. J Clin Endocrinol Metab. 1997;82:1983–1988.

    CAS  PubMed  Google Scholar 

  7. Nemerson Y. Tissue factor and hemostasis. Blood. 1988;71: 1–8.

    Article  CAS  PubMed  Google Scholar 

  8. Guha A, Bach R, Konigsberg W, Nemerson Y. Affinity purification of human tissue factor: interaction of factor VII and tissue factor in detergent micelles. Proc Natl Acad Sci USA. 1986;83:299–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bach RR. Initiation of coagulation by tissue factor. CRC Crit Rev Biochem. 1988;23:339–368.

    Article  CAS  PubMed  Google Scholar 

  10. Moore KL. The Developing Human. 4th ed. Philadelphia, PA: W. B. Saunders Company; 1988.

  11. Damsky CH, Fisher SJ. Trophoblast pseudo-vasculogenesis: faking it with endothelial adhesion receptors. Curr Opin Cell Biol. 1998;10:660–666.

    Article  CAS  PubMed  Google Scholar 

  12. Pijnenborg R, Vercruysse L, Hanssens M. The uterine spiral arteries in human pregnancy: facts and controversies. Placenta. 2006;27:939–958.

    Article  CAS  PubMed  Google Scholar 

  13. Dunn CL, Kelly RW, Critchley HO. Decidualization of the human endometrial stromal cell: an enigmatic transformation. Reprod Biomed Online. 2003;7:151–161.

    Article  PubMed  Google Scholar 

  14. Tilley R, Mackman N. Tissue factor in hemostasis and thrombosis. Semin Thromb Hemost. 2006;32:5–10.

    Article  CAS  PubMed  Google Scholar 

  15. Roberts DK, Parmley TH, Walker NJ, Horbelt DV. Ultra-structure of the microvasculature in the human endometrium throughout the normal menstrual cycle. Am J Obstet Gynecol. 1992;166:1393–1406.

    Article  CAS  PubMed  Google Scholar 

  16. Ludwig H, Spornitz UM. Microarchitecture of the human endometrium by scanning electron microscopy: menstrual desquamation and remodeling. Ann N Y Acad Sci. 1991;622: 28–46.

    Article  CAS  PubMed  Google Scholar 

  17. Rodgers WH, Matrisian LM, Giudice LC, et al. Patterns of matrix metalloproteinase expression in cycling endometrium imply differential functions and regulation by steroid hormones. J Clin Invest. 1994;94:946–953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Salamonsen LA, Woolley DE. Menstruation: induction by matrix metalloproteinases and inflammatory cells. J Reprod Immunol. 1999;44:1–27.

    Article  CAS  PubMed  Google Scholar 

  19. Bulmer JN, Morrison L, Longfellow M, Ritson A, Pace D. Granulated lymphocytes in human endometrium: histochemical and immunohistochemical studies. Hum Reprod. 1991;6: 791–798.

    Article  CAS  PubMed  Google Scholar 

  20. Reynolds LP, Killilea SD, Redmer DA. Angiogenesis in the female reproductive system. FASEB J. 1992;6:886–892.

    Article  CAS  PubMed  Google Scholar 

  21. Gordon JD, Shifren JL, Foulk RA, Taylor RN, Jaffe RB. Angiogenesis in the human female reproductive tract. Obstet Gynecol Surv. 1995;50:688–697.

    Article  CAS  PubMed  Google Scholar 

  22. Smith SK. Growth factors in the human endometrium. Hum Reprod. 1994;9:936–946.

    Article  CAS  PubMed  Google Scholar 

  23. Goodger AM, Rogers PA. Blood vessel growth in the endometrium. Microcirculation. 1995;2:329–343.

    Article  CAS  PubMed  Google Scholar 

  24. Tazuke SI, Giudice LC. Growth factors and cytokines in endometrium, embryonic development, and maternal: embryonic interactions. Semin Reprod Endocrinol. 1996;14: 231–245.

    Article  CAS  PubMed  Google Scholar 

  25. Arici A, Seli E, Senturk LM, Gutierrez LS, Oral E, Taylor HS. Interleukin-8 in the human endometrium. J Clin Endocrinol Metab. 1998;83:1783–1787.

    CAS  PubMed  Google Scholar 

  26. Krikun G, Schatz F, Finlay T, et al. Expression of angiopoietin-2 by human endometrial endothelial cells: regulation by hypoxia and inflammation. Biochem Biophys Res Commun. 2000;275:159–163.

    Article  CAS  PubMed  Google Scholar 

  27. Ferrara N. Molecular and biological properties of vascular endothelial growth factor. J Mol Med. 1999;77:527–543.

    Article  CAS  PubMed  Google Scholar 

  28. Torry DS, Torry RJ. Angiogenesis and the expression of vascular endothelial growth factor in endometrium and placenta. Am J Reprod Immunol. 1997;37:21–29.

    Article  CAS  PubMed  Google Scholar 

  29. Smith SK. Angiogenesis, vascular endothelial growth factor and the endometrium. Hum Reprod Update. 1998;4:509–519.

    Article  CAS  PubMed  Google Scholar 

  30. Shifren JL, Tseng JF, Zaloudek CJ, et al. Ovarian steroid regulation of vascular endothelial growth factor in the human endometrium: implications for angiogenesis during the menstrual cycle and in the pathogenesis of endometriosis. J Clin Endocrinol Metab. 1996;81:3112–3118.

    CAS  PubMed  Google Scholar 

  31. Casey M, MacDonald P. Modulation of endometrial blood flow: regulation of endothelin-1 biosynthesis and degradation in human endometrium. In: Alexander N, d’Arcangues C, eds. Modulation of Endometrial Blood Flow: Regulation of Endothelin-1 Biosynthesis and Degradation in Human Endometrium. Washington, DC: AAAS Press; 1992:209.

    Google Scholar 

  32. Markee JE. Morphological basis for menstrual bleeding. Bull NY Acad Med. 1948;24:253–268.

    CAS  Google Scholar 

  33. Cao Y, Linden P, Shima D, Browne F, Folkman J. In vivo angiogenic activity and hypoxia induction of heterodimers of placenta growth factor/vascular endothelial growth factor. J Clin Invest. 1996;98:2507–2511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Forsythe JA, Jiang BH, Iyer NV, et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol. 1996;16:4604–4613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Levy AP, Levy NS, Goldberg MA. Post-transcriptional regulation of vascular endothelial growth factor by hypoxia. J Biol Chem. 1996;271:2746–2753.

    Article  CAS  PubMed  Google Scholar 

  36. Lockwood CJ, Krikun G, Koo AB, Kadner S, Schatz F. Differential effects of thrombin and hypoxia on endometrial stromal and glandular epithelial cell vascular endothelial growth factor expression. J Clin Endocrinol Metab. 2002;87: 4280–4286.

    Article  CAS  PubMed  Google Scholar 

  37. Ludwig H, Metzger H. The re-epithelization of endometrium after menstrual desquamation. Arch Gynakol. 1976;221:51–60.

    Article  CAS  PubMed  Google Scholar 

  38. Charnock-Jones DS, Sharkey AM, Rajput-Williams J, et al. Identification and localization of alternately spliced mRNAs for vascular endothelial growth factor in human uterus and estrogen regulation in endometrial carcinoma cell lines. Biol Reprod. 1993;48:1120–1128.

    Article  CAS  PubMed  Google Scholar 

  39. Torry DS, Holt VJ, Keenan JA, Harris G, Caudle MR, Torry RJ. Vascular endothelial growth factor expression in cycling human endometrium. Fertil Steril. 1996;66:72–80.

    Article  CAS  PubMed  Google Scholar 

  40. Goodger AM, Rogers PA. Endometrial endothelial cell proliferation during the menstrual cycle. Hum Reprod. 1994;9:399–405.

    Article  CAS  PubMed  Google Scholar 

  41. Charnock-Jones DS, Macpherson AM, Archer DF, et al. The effect of progestins on vascular endothelial growth factor, oestrogen receptor and progesterone receptor immunoreactivity and endothelial cell density in human endometrium. Hum Reprod. 2000;15(suppl 3):85–95.

    Article  CAS  PubMed  Google Scholar 

  42. Rogers PA, Au CL, Affandi B. Endometrial microvascular density during the normal menstrual cycle and following exposure to long-term levonorgestrel. Hum Reprod. 1993;8: 1396–1404.

    Article  CAS  PubMed  Google Scholar 

  43. Giudice LC, Ferenzcy A. The endometrial cycle. In: Reproductive Endocrinology, Surgery and Technology. Edited by Adashi EY, Rock JA and Rosenwaks Z. Philadelphia: Lippincott-Raven; 1996:272–300.

    Google Scholar 

  44. Lockwood CJ, Krikun G, Aigner S, Schatz F. Effects of thrombin on steroid-modulated cultured endometrial stromal cell fibrinolytic potential. J Clin Endocrinol Metab. 1996;81: 107–112.

    CAS  PubMed  Google Scholar 

  45. Cocks TM, Moffatt JD. Protease-activated receptors: sentries for inflammation? Trends Pharmacol Sci. 2000;21:103–108.

    Article  CAS  PubMed  Google Scholar 

  46. Croxatto HB. Clinical profile of Implanon: a single-rod etonogestrel contraceptive implant. Eur J Contracept Reprod Health Care. 2000;5(suppl 2):21–28.

    CAS  PubMed  Google Scholar 

  47. d’Arcangues C. Management of vaginal bleeding irregularities induced by progestin-only contraceptives. Hum Reprod. 2000;15(suppl 3):24–29.

    Article  PubMed  Google Scholar 

  48. Lockwood CJ, Schatz F. A biological model for the regulation of peri-implantational hemostasis and menstruation. J Soc Gynecol Investig. 1996;3:159–165.

    Article  CAS  PubMed  Google Scholar 

  49. Bartelmez GW. Menstruation. Physiol Rev. 1937;17:28–72.

    Article  Google Scholar 

  50. Rogers PA. Endometrial vasculature in Norplant users. Hum Reprod. 1996;11(suppl 2):45–50.

    Article  PubMed  Google Scholar 

  51. Hickey M, Fraser I, Dwarte D, Graham S. Endometrial vasculature in Norplant users: preliminary results from a hysteroscopic study. Hum Reprod. 1996;11(suppl 2):35–44.

    Article  PubMed  Google Scholar 

  52. Hickey M, Dwarte D, Fraser IS. Precise measurements of intrauterine vascular structures at hysteroscopy in menorrhagia and during Norplant use. Hum Reprod. 1998;13:3190–3196.

    Article  CAS  PubMed  Google Scholar 

  53. Runic R, Schatz F, Wan L, Demopoulos R, Krikun G, Lockwood CJ. Effects of norplant on endometrial tissue factor expression and blood vessel structure. J Clin Endocrinol Metab. 2000;85:3853–3859.

    CAS  PubMed  Google Scholar 

  54. Lockwood CJ, Krikun G, Runic R, Schwartz LB, Mesia AF, Schatz F. Progestin-epidermal growth factor regulation of tissue factor expression during decidualization of human endometrial stromal cells. J Clin Endocrinol Metab. 2000;85:297–301.

    CAS  PubMed  Google Scholar 

  55. Lockwood CJ, Runic R, Wan L, et al. The role of tissue factor in regulating endometrial haemostasis: implications for progestin-only contraception. Hum Reprod. 2000;15(suppl 3): 144–151.

    Article  CAS  PubMed  Google Scholar 

  56. Critchley HO, Wang H, Kelly RW, Gebbie AE, Glasier AF. Progestin receptor isoforms and prostaglandin dehydrogenase in the endometrium of women using a levonorgestrel-releasing intrauterine system. Hum Reprod. 1998;13: 1210–1217.

    Article  CAS  PubMed  Google Scholar 

  57. Lockwood CJ, Kumar P, Krikun G, et al. Effects of thrombin, hypoxia, and steroids on interleukin-8 expression in decidualized human endometrial stromal cells: implications for long-term progestin-only contraceptive-induced bleeding. J Clin Endocrinol Metab. 2004;89:1467–1475.

    Article  CAS  PubMed  Google Scholar 

  58. Hickey M, Krikun G, Kodaman P, Schatz F, Carati C, Lockwood CJ. Long-term progestin-only contraceptives result in reduced endometrial blood flow and oxidative stress. J Clin Endocrinol Metab. 2006;91:3633–3638.

    Article  CAS  PubMed  Google Scholar 

  59. Krikun G, Critchley H, Schatz F, et al. Abnormal uterine bleeding during progestin-only contraception may result from free radical-induced alterations in angiopoietin expression. Am J Pathol. 2002;161:979–986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lau TM, Affandi B, Rogers PA. The effects of levonorgestrel implants on vascular endothelial growth factor expression in the endometrium. Mol. Hum Reprod. 1999;5:57–63.

    Article  CAS  PubMed  Google Scholar 

  61. Dvorak HF, Brown LF, Detmar M, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor, micro-vascular hyperpermeability, and angiogenesis. Am J Pathol. 1995;146:1029–1039.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Tsopanoglou NE, Maragoudakis ME. On the mechanism of thrombin-induced angiogenesis. Potentiation of vascular endothelial growth factor activity on endothelial cells by up-regulation of its receptors. J Biol Chem. 1999;274: 23969–23976.

    Article  CAS  PubMed  Google Scholar 

  63. Ukropec JA, Hollinger MK, Salva SM, Woolkalis MJ. SHP2 association with VE-cadherin complexes in human endothelial cells is regulated by thrombin. J Biol Chem. 2000;275: 5983–5986.

    Article  CAS  PubMed  Google Scholar 

  64. Strieter RM, Polverini PJ, Arenberg DA, et al. Role of C-X-C chemokines as regulators of angiogenesis in lung cancer. J Leukoc Biol. 1995;57:752–762.

    Article  CAS  PubMed  Google Scholar 

  65. Sharkey AM, Day K, McPherson A, et al. Vascular endothelial growth factor expression in human endometrium is regulated by hypoxia. J Clin Endocrinol Metab. 2000;85:402–409.

    CAS  PubMed  Google Scholar 

  66. Popovici RM, Irwin JC, Giaccia AJ, Giudice LC. Hypoxia and cAMP stimulate vascular endothelial growth factor (VEGF) in human endometrial stromal cells: potential relevance to menstruation and endometrial regeneration. J Clin Endocrinol Metab. 1999;84:2245–2248.

    Article  CAS  PubMed  Google Scholar 

  67. Lockwood CJ, Krikun G, Rahman M, Caze R, Buchwalder L, Schatz F. The role of decidualization in regulating endometrial hemostasis during the menstrual cycle, gestation, and in pathological states. Semin Thromb Hemost. 2007;33:111–117.

    Article  CAS  PubMed  Google Scholar 

  68. Vincent AJ, Salamonsen LA. The role of matrix metalloproteinases and leukocytes in abnormal uterine bleeding associated with progestin-only contraceptives. Hum Reprod. 2000;15(suppl 3):135–143.

    Article  CAS  PubMed  Google Scholar 

  69. Morison NB, Zhang J, Kaitu’u-Lino TJ, Fraser IS, Salamonsen LA. The long-term actions of etonogestrel and levonorgestrel on decidualized and non-decidualized endometrium in a mouse model mimic some effects of progestogen-only contraceptives in women. Reproduction. 2007;133:309–321.

    Article  CAS  PubMed  Google Scholar 

  70. Jones RL, Morison NB, Hannan NJ, Critchley HO, Salamonsen LA. Chemokine expression is dysregulated in the endometrium of women using progestin-only contraceptives and correlates to elevated recruitment of distinct leukocyte populations. Hum Reprod. 2005;20:2724–2735.

    Article  CAS  PubMed  Google Scholar 

  71. Baggiolini M, Walz A, Kunkel SL. Neutrophil-activating peptide-1/interleukin 8, a novel cytokine that activates neutrophils. J Clin Invest. 1989;84:1045–1049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Maymon E, Romero R, Pacora P, et al. Human neutrophil collagenase (matrix metalloproteinase 8) in parturition, premature rupture of the membranes, and intrauterine infection. Am J Obstet Gynecol. 2000;183:94–99.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick Schatz PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lockwood, C.J., Krikun, G., Hickey, M. et al. Decidualized Human Endometrial Stromal Cells Mediate Hemostasis, Angiogenesis, and Abnormal Uterine Bleeding. Reprod. Sci. 16, 162–170 (2009). https://doi.org/10.1177/1933719108325758

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719108325758

Key words

Navigation