Skip to main content
Log in

Hypermethylation of SOX2 Gene in Hydatidiform Mole and Choriocarcinoma

  • Published:
Reproductive Sciences Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This study investigated the expression and methylation profiles of SOX2, a stem cell—related transcription factor, in placentas and gestational trophoblastic disease. The methylation status of SOX2 promoter region in 55 hydatidiform moles, 4 choriocarcinoma, 23 first trimester, and 15 term placentas was evaluated by methylation-specific polymerase chain reaction. The methylated allele was found in 4.4% (1/23) of first trimester placentas, 26.7% (4/15) term placentas, and 56.4% (31/55) of hydatidiform moles and all choriocarcinoma samples and cell lines. A significant reduction in SOX2 messenger RNA expression was found in the hydatidiform moles (P = .027) when compared with that in the placentas. SOX2 messenger RNA expression was significantly correlated with SOX2 hypermethylation (P < .001). SOX2 expression was restored in choriocarcinoma cell lines following treatment to 5-Aza-2′ -deoxycytidine and/or Trichostatin A, demethylation and histone deacetylase inhibitors, respectively, and the response was synergistic. Epigenetic mechanisms may play important role on the transcriptional regulation of SOX2 and contribute to pathogenesis of gestational trophoblastic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Esteller M. Epigenetics provides a new generation of oncogenes and tumour-suppressor genes. Br J Cancer. 2006;96(suppl): R26–R30.

    Google Scholar 

  2. Fraga MF, Esteller M. Towards the human cancer epigenome: a first draft of histone modifications. Cell Cycle. 2005;4:1377–1381.

    Article  CAS  PubMed  Google Scholar 

  3. Strickland S, Richards WG. Invasion of the trophoblasts. Cell. 1992;71:355–357.

    Article  CAS  PubMed  Google Scholar 

  4. Smith HO. Gestational trophoblastic disease epidemiology and trends. Clin Obstet Gynecol. 2003;46:541–556.

    Article  PubMed  Google Scholar 

  5. Royal College of Obstetricians and Gynaecologists (RCOG). The management of gestational trophoblastic neoplasia (Guideline; no. 38). London, UK: Royal College of Obstetricians and Gyneacologists (RCOG). 2004;1–7.

    Google Scholar 

  6. Sattler HP, Lensch R, Rohde V, et al. Novel amplification unit at chromosome 3q25-q27 in human prostate cancer. Prostate. 2000;45:207–215.

    Article  CAS  PubMed  Google Scholar 

  7. Wiebe MS, Wilder PJ, Kelly D, et al. Isolation, characterization, and differential expression of the murine Sox2 promoter. Gene. 2000;246:383–393.

    Article  CAS  PubMed  Google Scholar 

  8. Sinclair AH, Berta P, Palmer MS, et al. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature. 1990;346:240–244.

    Article  CAS  PubMed  Google Scholar 

  9. Kamachi Y, Uchikawa M, Kondoh H. Pairing SOX off. Trends Genet. 2000;16:182–187.

    Article  CAS  PubMed  Google Scholar 

  10. Boer B, Kopp J, Mallanna S, et al. Elevating the levels of Sox2 in embryonal carcinoma cells and embryonic stem cells inhibits the expression of Sox2:Oct-3/4 target genes. Nucleic Acids Res. 2007;35:1773–1786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wegner M. From head to toes: the multiple facets of Sox proteins. Nucleic Acids Res. 1999;27:1409–1420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yuan H, Corbi N, Basilico C, et al. Developmental specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes Dev. 1995;9:2635–2645.

    Article  CAS  PubMed  Google Scholar 

  13. Avilion AA, Nicolis SK, Pevny LH, et al. Multipotent cell lineages in early mouse development depend on Sox2 function. Genes Dev. 2003;17:126–140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Niwa H, Toyooka Y, Shimosato D, et al. Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell. 2005;123:917–929.

    Article  CAS  PubMed  Google Scholar 

  15. Babaie Y, Herwig R, Greber B, et al. Analysis of Oct4-dependent transcriptional networks regulating self-renewal and pluripotency in human embryonic stem cells. Stem Cells. 2007;25:500–510.

    Article  CAS  PubMed  Google Scholar 

  16. Li J, Pan G, Cui K, et al. A dominant-negative form of mouse SOX2 induces trophectoderm differentiation and progressive polyploidy in mouse embryonic stem cells. J Biol Chem. 2007;282:19481–19492.

    Article  CAS  PubMed  Google Scholar 

  17. Shih IM, Mazur MT, Kurman RJ. Gestational trophoblastic disease and related lesion. In: Kurman RJ, ed. Blaustein’s Pathology of the Female Genital Tract. 5th ed. New York: Springer; 2002:1193–1250.

    Google Scholar 

  18. Paradinas FJ, Elston CW. Gestational trophoblastic disease. Haines and Taylor: Obstetrical and Gynaecological Pathology. In: Fox H, Wells M, eds. Edinburgh: Churchill Livingstone; 2003:1359–1430.

    Google Scholar 

  19. Cheung AN. Pathology of gestational trophoblastic diseases. Best Pract Res Clin Obstet Gynaecol. 2003;17:849–868.

    Article  PubMed  Google Scholar 

  20. Lai CY, Chan KY, Khoo US, et al. Analysis of gestational trophoblastic disease by genotyping and chromosome in situ hybridization. Mod Pathol. 2004;17:40–48.

    Article  CAS  PubMed  Google Scholar 

  21. Cheung AN, Khoo US, Lai CY, et al. Metastatic trophoblastic disease after an initial diagnosis of partial hydatidiform mole: genotyping and chromosome in situ hybridization analysis. Cancer. 2004;100:1411–1417.

    Article  PubMed  Google Scholar 

  22. Ngan HY, Chan KY, Tam KF. Gestational trophoblastic disease. Curr Obstet Gynaecol. 2006;16:93–99.

    Article  Google Scholar 

  23. Xue WC, Feng HC, Tsao SW, et al. Methylation status and expression of E-cadherin and cadherin-11 in gestational trophoblastic diseases. Int J Gynecol Cancer. 2003;13:879–888.

    Article  CAS  PubMed  Google Scholar 

  24. Xue WC, Chan KY, Feng HC, et al. Promoter hypermethylation of multiple genes in hydatidiform mole and choriocarcinoma. J Mol Diagn. 2004;6:326–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li LC, Dahiya R. MethPrimer: designing primers for methylation PCRs. Bioinformatics. 2002;18:1427–1431.

    Article  CAS  PubMed  Google Scholar 

  26. Feng HC, Tsao SW, Ngan HY, et al. Overexpression of prostate stem cell antigen is associated with gestational trophoblastic neoplasia. Histopathology. 2008;52:167–174.

    Article  CAS  PubMed  Google Scholar 

  27. Shen DH, Chan KY, Khoo US, et al. Epigenetic and genetic alterations of p33ING1b in ovarian cancer. Carcinogenesis. 2005;26:855–863.

    Article  CAS  PubMed  Google Scholar 

  28. Feng H, Cheung AN, Xue WC, et al. Down-regulation and promoter methylation of tissue inhibitor of metalloproteinase 3 in choriocarcinoma. Gynecol Oncol. 2004;94:375–382.

    Article  CAS  PubMed  Google Scholar 

  29. Meng CF, Zhu XJ, Peng G, et al. Re-expression of methylation-induced tumor suppressor gene silencing is associated with the state of histone modification in gastric cancer cell lines. World J Gastroenterol. 2007;13:6166–6171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ben-Porath I, Cedar H. Epigenetic crosstalk. Mol Cell. 2001;8:933–935.

    Article  CAS  PubMed  Google Scholar 

  31. Fahrner JA, Eguchi S, Herman JG, et al. Dependence of histone modifications and gene expression on DNA hypermethylation in cancer. Cancer Res. 2002;62:7213–7218.

    CAS  PubMed  Google Scholar 

  32. Fuks F, Burgers WA, Brehm A, et al. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat Genet. 2000;24:88–91.

    Article  CAS  PubMed  Google Scholar 

  33. Rountree MR, Bachman KE, Baylin SB. DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat Genet. 2000;25:269–277.

    Article  CAS  PubMed  Google Scholar 

  34. Christman JK. 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene. 2002;21: 5483–5495.

    Article  CAS  PubMed  Google Scholar 

  35. Donadelli M, Costanzo C, Faggioli L, et al. Trichostatin A, an inhibitor of histone deacetylases, strongly suppresses growth of pancreatic adenocarcinoma cells. Mol Carcinog. 2003;38:59–69.

    Article  CAS  PubMed  Google Scholar 

  36. Li X, Kato Y, Tsuji Y, et al. The effects of trichostatin a on mRNA expression of chromatin structure-, DNA methylation-, and development-related genes in cloned mouse blastocysts. Cloning Stem Cells. 2008;10:133–142.

    Article  CAS  PubMed  Google Scholar 

  37. Santagata S, Ligon KL, Hornick JL. Embryonic stem cell transcription factor signatures in the diagnosis of primary and metastatic germ cell tumors. Am J Surg Pathol. 2007;31:836–845.

    Article  PubMed  Google Scholar 

  38. Cameron EE, Bachman KE, Myöhänen S, et al. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet. 1999;21: 103–107.

    Article  CAS  PubMed  Google Scholar 

  39. Torres-Padilla ME, Parfitt DE, Kouzarides T, et al. Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature. 2007;445:214–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dong C, Wilhelm D, Koopman P. Sox genes and cancer. Cytogenet Genome Res. 2004;105:442–447.

    Article  CAS  PubMed  Google Scholar 

  41. Li XL, Eishi Y, Bai YQ, et al. Expression of the SRY-related HMG box protein SOX2 in human gastric carcinoma. Int J Oncol. 2004;24:257–263.

    CAS  PubMed  Google Scholar 

  42. Hemmati HD, Nakano I, Lazareff JA, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA. 2003;100:15178–15183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gu G, Yuan J, Wills M, et al. Prostate cancer cells with stem cell characteristics reconstitute the original human tumor in vivo. Cancer Res. 2007;67:4807–4815.

    Article  CAS  PubMed  Google Scholar 

  44. Rodriguez-Pinilla SM, Sarrio D, Moreno-Bueno G, et al. SOX2: a possible driver of the basal-like phenotype in sporadic breast cancer. Mod Pathol. 2007;20:474–481.

    Article  CAS  PubMed  Google Scholar 

  45. Rahnama F, Shafiei F, Gluckman PD, et al. Epigenetic regulation of human trophoblastic cell migration and invasion. Endocrinology. 2006;147:5275–5283.

    Article  CAS  PubMed  Google Scholar 

  46. Otsubo T, Akiyama Y, Yanagihara K, et al. SOX2 is frequently downregulated in gastric cancers and inhibits cell growth through cell-cycle arrest and apoptosis. Br J Cancer. 2008;98: 824–831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang HJ, Siu MK, Wong ES Wong, et al. Oct4 is epigenetically regulated by methylation in normal placenta and gestational trophoblastic disease. Placenta 2008;29:549–554.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annie N. Y. Cheung MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, A.S.M., Siu, M.K.Y., Zhang, H. et al. Hypermethylation of SOX2 Gene in Hydatidiform Mole and Choriocarcinoma. Reprod. Sci. 15, 735–744 (2008). https://doi.org/10.1177/1933719108322433

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719108322433

Key words

Navigation