Skip to main content

Advertisement

Log in

Large Conductance Ca2+-Activated K+ Channels Contribute to Vascular Function in Nonpregnant Human Uterine Arteries

  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Large conductance K+ channels (BKCa) are expressed in uterine artery (UA) smooth muscle from nonpregnant and pregnant sheep and contribute to the regulation of basal vascular tone and responses to estrogen and vasoconstrictors. To determine if BKCa are expressed in women and contribute to UA function, we collected UA from nonpregnant women (n = 31) at elective hysterectomy and analyzed for subunit protein, localization with immunohistochemistry, and function using endothelium-denuded rings. UA expresses BKCa α -, β1- and β2-subunit protein. KCl and phenylephrine (PE, an α1-agonist) caused dose-dependent vasoconstriction (P < .001), and UA precontracted with PE dose-dependently relaxed with sodium nitroprusside (SNP;P < .001). Tetraethylammonium chloride (TEA, 0.2–1.0 mM), a BKCainhibitor, dose-dependently increased resting tone (P = .004; 28% ± 5.3% with 1.0 mM), enhanced PE-induced (10−6 M) vasoconstriction (P < .04), and attenuated SNP-induced relaxation at 1.0 mM (P = .02). BKCa are expressed in human UA and modulate vascular function by attenuating vasoconstrictor responses and contributing to nitric oxide-induced vasorelaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lunell NO, Nylund LE, Lewander R, Sarby B. Uteroplacental blood flow in pre-eclampsia measurements with indium-113m and a computer-linked gamma camera. Clin Hypertens B. 1982;1:105–117.

    CAS  Google Scholar 

  2. Rosenfeld CR. The Uterine Circulation. Ithaca, NY: Perinatology Press; 1989.

    Google Scholar 

  3. Nathanielsz PW. Animal Models in Fetal Medicine (IV). Ithaca, NY: Perinatology Press; 1984.

    Google Scholar 

  4. Rosenfeld CR. Distribution of cardiac output in ovine pregnancy. Am J Physiol. 1977;232:H231–H235.

    CAS  PubMed  Google Scholar 

  5. Rosenfeld CR, Morris FH Jr, Makowski EL, Meschia G, Battaglia FC. Circulatory changes in the reproductive tissues of ewes during pregnancy. Gynecol Invest. 1974;5:252–268.

    Article  CAS  PubMed  Google Scholar 

  6. Naden RP, Rosenfeld CR. Effect of angiotensin II on uterine and systemic vasculature in pregnant sheep. J Clin Invest. 1981;68:468–474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Magness RR, Rosenfeld CR. Systemic and uterine responses to alpha-adrenergic stimulation in pregnant and nonpregnant ewes. Am J Obstet Gynecol. 1986;155:897–904.

    Article  CAS  PubMed  Google Scholar 

  8. Erkkola RU, Pirhonen JP. Uterine and umbilical flow velocity waveforms in normotensive and hypertensive subjects during the angiotensin II sensitivity test. Am J Obstet Gynecol. 1992;166:910–916.

    Article  CAS  PubMed  Google Scholar 

  9. Rosenfeld CR, Gant NF Jr. The chronically instrumented ewe, a model for studying vascular reactivity to angiotensin II in pregnancy. J Clin Invest. 1981;67:486–492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rosenfeld CR, White RE, Roy T, Cox BE. Calcium-activated potassium channels and nitric oxide coregulate estrogen-induced vasodilation. Am J Physiol. 2000;279:H319–H328.

    Article  CAS  Google Scholar 

  11. Rosenfeld CR, Cornfield DN, Roy T. Ca2+-activated K+ channels modulate basal and E2β-induced rises in uterine blood flow in ovine pregnancy. Am J Physiol. 2001;281:H422–H431.

    CAS  Google Scholar 

  12. Rosenfeld CR, Roy T, DeSpain K, Cox BE. Large-conductance Ca2+-dependent K+ channels regulate basal uteroplacental blood flow in ovine pregnancy. J Soc Gynecol Investig. 2005; 12:402–408.

    Article  CAS  PubMed  Google Scholar 

  13. Nagar D, Liu X-t, Rosenfeld CR. Estrogen regulates β1-subunit expression in Ca2+-activated K+ channels in arteries from reproductive tissues. AmJPhysiol Heart Circ Physiol. 2005;289: H1417–H1427.

    Article  CAS  Google Scholar 

  14. Toro L, Wallner M, Meera P, Tanaka Y. Maxi-KCa, a unique member of the voltage-gated K+ channel superfamily. News Physiol Sci. 1998;13:112–117.

    CAS  PubMed  Google Scholar 

  15. Kaczorowski GJ, Knaus HG, Leonard RJ, McManus OB, Garcia ML. High-conductance calcium-activated potassium channels; structure, pharmacology, and function. J Bioenerg Biomembr. 1996;28:255–267.

    Article  CAS  PubMed  Google Scholar 

  16. Ledoux J, Werner ME, Brayden, Nelson MT. Calcium-activated potassium channels and the regulation of vascular tone. Physiology. 2006;21:69–79.

    Article  CAS  PubMed  Google Scholar 

  17. Brenner R, Perez GJ, Bonev AD, et al.Vasoregulation by the β1 subunit of the calcium-activated potassium channel. Nature. 2000;407:870–876.

    Article  CAS  PubMed  Google Scholar 

  18. Wang YW, Ding JP, Xia XM, Lingle CJ. Consequences of the stoichiometry of Slo1 alpha and auxiliary beta subunits on functional properties of large-conductance Ca2+-activated K+ channels. J Neurosci. 2002;22:1550–1561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Orio P, Latorre R. Differential effects of β1 and β2 subunits on BK channel activity. J Gen Physiol. 2005;125:395–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dick GM, Rossow CF, Smirnov S, Horowitz B, Sanders KM. Tamoxifen activates smooth muscle BK channels through the regulatory β1 subunit. J Biol Chem. 2001;26:34594–34599.

    Article  Google Scholar 

  21. Valverde MA, Rojas P, Amigo J, et al. Acute activation of maxi-K channels (hSlo) by estradiol binding to the β subunit. Science. 1999;285:1929–1931.

    Article  CAS  PubMed  Google Scholar 

  22. Orio P, Rojas P, Ferreira G, Latorre R. New disguises for an old channel: MaxiK channel β-subunits. News Physiol Sci. 2002;17:156–161.

    CAS  PubMed  Google Scholar 

  23. White RE, Darkow DJ, Lang JL. Estrogen relaxes coronary arteries by opening BKCa channels through a cGMP-dependent mechanism. Circ Res. 1995;77:936–942.

    Article  CAS  PubMed  Google Scholar 

  24. Darkow DJ, Lu L, White RE. Estrogen relaxation of coronary artery smooth muscle is mediated by nitric oxide and cGMP. Am J Physiol Heart Circ Physiol. 1997;272:H2765–H2773.

    Article  CAS  Google Scholar 

  25. Brayden JE, Nelson MT. Regulation of arterial tone by activation of calcium-dependent potassium channels. Science. 1992;256:532–535.

    Article  CAS  PubMed  Google Scholar 

  26. Nelson MT, Quayle JM. Physiologic roles and properties of potassium channels in arterial smooth muscle. Am J Physiol. 1995;268:C799–C822.

    Article  CAS  PubMed  Google Scholar 

  27. Rosenfeld CR, Cox BE, Roy T, Magness RR. Nitric oxide contributes to estrogen-induced vasodilation of the ovine uterine circulation. J Clin Invest. 1996;98:2158–2166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Van Buren GA, Yang DS, Clark KE. Estrogen-induced uterine vasodilation is antagonized by L-nitroarginine methyl ester, an inhibitor of nitric oxide synthesis. Am J Obstet Gynecol. 1992;167:828–833.

    Article  PubMed  Google Scholar 

  29. Rosenfeld CR, Roy TA. Large conductance Ca2+-dependent K+ channels contribute to attenuated uterine vascular responses to α-stimulation in pregnant sheep. Reprod Sci. 2007;14:110A.

    Google Scholar 

  30. Hutanu C, Cox BE, Liu X-t, DeSpain K, Rosenfeld CR. Vascular development beginning in early ovine gestation: carotid smooth muscle function, phenotype and biochemical markers. Am J Physiol Regul Integr Comp Physiol. 2007;293: 323–333.

    Article  CAS  Google Scholar 

  31. Magness RR, Osei-Boaten K, Mitchell MD, Rosenfeld CR. In vitro prostacyclin production by ovine uterine and systemic arteries: effects of angiotensin. J Clin Invest. 1985;76: 2206–2212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sladek SM, Magness RR, Conrad KP. Nitric oxide and pregnancy. Am J Physiol Regul Integr Comp Physiol. 1997;272: R441–R463.

    Article  CAS  Google Scholar 

  33. Cox BE, Roy TA, Rosenfeld CR. Angiotensin II mediates uterine vasoconstriction through-stimulation. Am J Physiol Heart Circ Physiol 2004; 287:H126–H134.

    Article  CAS  PubMed  Google Scholar 

  34. Gillham JC, Myers JE, Baker PN, Taggart MJ. Regulation of endothelial-dependent relaxation in human systemic arteries by SKCa and IKCa channels. Reprod Sci. 2007;14:43–50.

    Article  CAS  PubMed  Google Scholar 

  35. Knaus HG, Garcia-Calvo M, Kaczorowski GJ, Garcia ML. Subunit composition of the high conductance calcium-activated potassium channel from smooth muscle, a representative of mSlo and slowpoke family of potassium channels. J Biol Chem. 1994; 269:3921–3924.

    CAS  PubMed  Google Scholar 

  36. Benkusky NA, Fergus DJ, Zucchero TM, England SK. Regulation of the Ca2+-sensitive domains of the maxi-K channel in the mouse myometrium during gestation. J Biol Chem. 2000;275:27712–27719.

    CAS  PubMed  Google Scholar 

  37. Nishimaru K, Eghbali M, Lu R, Marijic J, Stefani E, Toro L. Functional and molecular evidence of MaxiK channel β1 subunit decrease with coronary artery ageing in the rat. J Physiol. 2004;559:849–862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Benkusky NA, Korovkina VP, Brainard AM, England SK. Myometrial maxi-K channel β1 subunit modulation during pregnancy and after 17β-estradiol stimulation. FEBS Lett. 2002;524:97–102.

    Article  CAS  PubMed  Google Scholar 

  39. Holdiman AJ, Fergus DJ, England SK. 17β-estradiol upregulates distinct maxi-K channel transcripts in mouse uterus. Mol Cell Endocrinol. 2002;192:1–6.

    Article  CAS  PubMed  Google Scholar 

  40. Nelson MT, Bone AD. The β1 subunit of the Ca2+-sensitive K+ channel protects against hypertension.J Clin Invest. 2004;113: 955–957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hagen BM, Bayguinov O, Sanders KM. β1-subunits are required for regulation of coupling between Ca2+ transients and Ca2+-activated K+ (BK) channels by protein kinase C. Am J Physiol Cell Physiol. 2003;285:C1270–C1280.

    Article  CAS  PubMed  Google Scholar 

  42. Gibson TC, Phernetton TM, Wiltbank MC, Magness RR. Development and use of an ovarian synchronization model to study the effects of endogenous estrogen and nitric oxide on uterine blood flow during ovarian cycles in sheep. Biol Reprod. 2004;70:1886–1894.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles R. Rosenfeld MD.

Additional information

This study was supported by NIH grants HD-08783 (CRR) and HD11149 (RAW).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenfeld, C.R., Word, R.A., DeSpain, K. et al. Large Conductance Ca2+-Activated K+ Channels Contribute to Vascular Function in Nonpregnant Human Uterine Arteries. Reprod. Sci. 15, 651–660 (2008). https://doi.org/10.1177/1933719108319160

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719108319160

Key words

Navigation