Skip to main content
Log in

Programmed Upregulation of Adipogenic Transcription Factors in Intrauterine Growth-Restricted Offspring

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

As enhanced adipogenesis contributes to programmed obesity, adipogenic and lipogenic signaling pathways in intrauterine growth restricted (IUGR) offspring were examined. From 10 days to term gestation, rats received ad libitum food (control) or were 50% food-restricted (IUGR). Pups were nursed and weaned to ad libitum diet. mRNA and protein levels of adipogenic transcription factors and lipid enzymes (1 day and 9 month) and adipocyte cell size (3 weeks and 9 months) were determined. Oneday-old IUGR males showed upregulation of peroxisome proliferator-activated receptor (PPARγ2), including upstream factors regulating PPARγ, and RXRα, with which PPARγ heterodimerizes. Intracellular lipolytic enzyme (hormone-sensitive lipase) was downregulated. Nine-month-old IUGR males showed upregulation of adipogenic and lipogenic (SREBP1c) transcription factors with upregulation of enzymes facilitating fatty acid uptake (lipoprotein lipase) and synthesis (fatty acid synthase), leading to hypertrophic adipocytes. Paradoxical upregulation of adipogenesis signaling cascade prior to the development of obesity in IUGR males suggests early changes in signaling mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ogden CL, Yanovski SZ, Carroll MD, Flegal KM The epidemiology of obesity. Gastroenterology. 2007;132:2087–2102.

    Article  PubMed  Google Scholar 

  2. Plagemann A., Harder T. The changing face and implications of childhood obesity. N Engl J Med. 2004;350:2414–2416.

    Article  PubMed  Google Scholar 

  3. Reilly MP, Rader DJ The metabolic syndrome: more than the sum of its parts? Circulation. 2003;108:1546–1551.

    Article  PubMed  Google Scholar 

  4. Spiegelman BM, Flier JS Adipogenesis and obesity: rounding out the big picture. Cell. 1996;87:377–389.

    Article  CAS  PubMed  Google Scholar 

  5. Ailhaud G., Grimaldi P., Negrel R. Cellular and molecular aspects of adipose tissue development. Annu Rev Nutr. 1992; 12:207–233.

    Article  CAS  PubMed  Google Scholar 

  6. Hausman DB, DiGirolamo M., Bartness TJ, Hausman GJ, Martin RJ The biology of white adipocyte proliferation. Obes Rev. 2001;2:239–254.

    Article  CAS  PubMed  Google Scholar 

  7. Gregoire FM, Smas CM, Sul HS Understanding adipocyte differentiation. Physiol Rev. 1998;78:783–809.

    Article  CAS  PubMed  Google Scholar 

  8. Morrison RF, Farmer SR Insights into the transcriptional control of adipocyte differentiation. J Cell Biochem. 1999; 32–33:59–67.

    Article  Google Scholar 

  9. Rosen ED, Walkey CJ, Puigserver P., Spiegelman BM Transcriptional regulation of adipogenesis. Genes Dev. 2000; 14:1293–1307.

    CAS  PubMed  Google Scholar 

  10. Darlington GJ, Ross SE, MacDougald OA The role of C/EBP genes in adipocyte differentiation. J Biol Chem. 1998;273:30057–30060.

    Article  CAS  PubMed  Google Scholar 

  11. Rosen ED, Spiegelman BM PPARgamma: a nuclear regulator of metabolism, differentiation, and cell growth. J Biol Chem. 2001;276:37731–37734.

    Article  CAS  PubMed  Google Scholar 

  12. Lane MD, Lin FT, MacDougald OA, Vasseur-Cognet M. Control of adipocyte differentiation by CCAAT/enhancer binding protein alpha (C/EBP alpha). Int J Obes Relat Metab Disord. 1996;20(suppl 3):S91–S96.

    CAS  PubMed  Google Scholar 

  13. Rosen ED, Hsu CH, Wang X., et al. C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway. Genes Dev. 2002;16:22–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fajas L., Schoonjans K., Gelman L., et al. Regulation of peroxisome proliferator-activated receptor gamma expression by adipocyte differentiation and determination factor 1/sterol regulatory element binding protein 1: implications for adipocyte differentiation and metabolism. Mol Cell Biol. 1999;19:5495–5503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim JB, Spiegelman BM ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev. 1996;10:1096–1107.

    Article  CAS  PubMed  Google Scholar 

  16. Maggio CA, Greenwood MR Adipose tissue lipoprotein lipase (LPL) and triglyceride uptake in zucker rats. Physiol Behav. 1982;29:1147–1152.

    Article  CAS  PubMed  Google Scholar 

  17. Berndt J., Kovacs P., Ruschke K., et al. Fatty acid synthase gene expression in human adipose tissue: association with obesity and type 2 diabetes. Diabetologia. 2007;50:1472–1480.

    Article  CAS  PubMed  Google Scholar 

  18. Mobbs CV, Makimura H. Block the FAS, lose the fat. Nat Med. 2002;8:335–336.

    Article  CAS  PubMed  Google Scholar 

  19. Holm C., Osterlund T., Laurell H., Contreras JA Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Annu Rev Nutr. 2000;20:365–393.

    Article  CAS  PubMed  Google Scholar 

  20. Barker M., Robinson S., Osmond C., Barker DJ Birth weight and body fat distribution in adolescent girls. Arch Dis Child. 1997;77:381–383.

    Article  CAS  PubMed  Google Scholar 

  21. Ravelli GP, Stein ZA, Susser MW Obesity in young men after famine exposure in utero and early infancy. N Engl J Med. 1976;295:349–353.

    Article  CAS  PubMed  Google Scholar 

  22. Levin BE, Govek E. Gestational obesity accentuates obesity in obesity-prone progeny. Am JPhysiol. 1998;275:R1374–R1379.

    CAS  Google Scholar 

  23. Desai M., Gayle D., Babu J., Ross MG Programmed obesity in intrauterine growth-restricted newborns: modulation by newborn nutrition. Am J Physiol Regul Integr Comp Physiol. 2005;288:R91–R96.

    Article  CAS  PubMed  Google Scholar 

  24. Desai M., Gayle D., Babu J., Ross MG The timing of nutrient restriction during rat pregnancy/lactation alters metabolic syndrome phenotype. Am J Obstet Gynecol. 2007;196:555.e1–e7.

    Article  CAS  Google Scholar 

  25. Desai M., Gayle D., Gaung H., Ross MG Programmed hyperphagia due to reduced anorexigenic mechanisms in intrauterine growth-restricted offspring. Reprod Sci. 2007;14:329–337.

    Article  PubMed  Google Scholar 

  26. Spiegelman BM, Choy L., Hotamisligil GS, Graves RA, Tontonoz P. Regulation of adipocyte gene expression in differentiation and syndromes of obesity/diabetes. J Biol Chem. 1993;268:6823–2686.

    CAS  PubMed  Google Scholar 

  27. De Rijk E. Pregnancy dating in the rat: placental morphology and maternal blood parameters. Toxicol Pathol. 2002;30:271–282.

    Article  PubMed  Google Scholar 

  28. Park CS Role of compensatory mammary growth in epigenetic control of gene expression. FASEB J.2005;19:1586–1591.

    Article  CAS  PubMed  Google Scholar 

  29. McGuire MK, Littleton AW, Schulze KJ, Rasmussen KM Pre- and postweaning food restrictions interact to determine reproductive success and milk volume in rats. J Nutr. 1995; 125:2400–2406.

    Article  CAS  PubMed  Google Scholar 

  30. Cooke PS, Naaz A. Role of estrogens in adipocyte development and function. Exp Biol Med. 2004;229:127–135.

    Article  Google Scholar 

  31. Hotta K., Gustafson TA, Yoshioka S., Ortmeyer HK, Bodkin NL, Hansen BC Relationships of PPARgamma and PPARgamma2 mRNA levels to obesity, diabetes and hyperinsulinaemia in rhesus monkeys. Int J Obes Relat Metab Disord. 1998;22:1000–1010.

    Article  CAS  PubMed  Google Scholar 

  32. Kubota N., Terauchi Y, Miki H., et al. PPAR gamma mediates high fat diet-induced adipocyte hypertrophy and insulin resistance. Mol Cell. 1999;4:597–609.

    Article  CAS  PubMed  Google Scholar 

  33. Llado I., Pons A., Palou A. Effects of fasting on lipoprotein lipase activity in different depots of white and brown adipose tissues in diet-induced overweight rats. JNutr Biochem. 1999;10:609–614.

    Article  CAS  Google Scholar 

  34. Arner P., Bolinder J., Engfeldt P., Ostman J. The antilipolytic effect of insulin in human adipose tissue in obesity, diabetes mellitus, hyperinsulinemia, and starvation. Metabolism. 1981;30:753–760.

    Article  CAS  PubMed  Google Scholar 

  35. Large V., Reynisdottir S., Langin D., et al. Decreased expression and function of adipocyte hormone-sensitive lipase in subcutaneous fat cells of obese subjects. J Lipid Res. 1999;40:2059–2066.

    CAS  PubMed  Google Scholar 

  36. Boizard M., Le Liepvre X., Lemarchand P., Foufelle F., Ferre P., Dugail I. Obesity-related overexpression of fatty-acid synthase gene in adipose tissue involves sterol regulatory element-binding protein transcription factors. J Biol Chem. 1998;273:29164–29171.

    Article  CAS  PubMed  Google Scholar 

  37. Bergo M., Wu G., Ruge T., Olivecrona T. Down-regulation of adipose tissue lipoprotein lipase during fasting requires that a gene, separate from the lipase gene, is switched on. J Biol Chem. 2002;277:11927–11932.

    Article  CAS  PubMed  Google Scholar 

  38. Samra JS, Clark ML, Humphreys SM, Macdonald IA, Frayn KN Regulation of lipid metabolism in adipose tissue during early starvation. Am J Physiol. 1996;271:E541–E546.

    CAS  PubMed  Google Scholar 

  39. Sztalryd C., Kraemer FB Regulation of hormone-sensitive lipase during fasting. Am J Physiol. 1994;266:E179–E185.

    Article  CAS  PubMed  Google Scholar 

  40. Berger JP, Akiyama TE, Meinke PT PPARs: therapeutic targets for metabolic disease. Trends Pharmacol Sci. 2005;26:244–251.

    Article  CAS  PubMed  Google Scholar 

  41. Kopecky J., Flachs P., Bardova K., Brauner P., Prazak T., Sponarova J. Modulation of lipid metabolism by energy status of adipocytes: implications for insulin sensitivity. Ann NY Acad Sci. 2002;967:88–101.

    Article  CAS  PubMed  Google Scholar 

  42. Jocken JW, Langin D., Smit E., et al. Adipose triglyceride lipase and hormone-sensitive lipase protein expression is decreased in the obese insulin-resistant state. J Clin Endocrinol Metab. 2007;92:2292–2299.

    Article  CAS  PubMed  Google Scholar 

  43. Vickers MH, Gluckman PD, Coveny AH, et al. Neonatal leptin treatment reverses developmental programming. Endocrinology. 2005;146:4211–4216.

    Article  CAS  PubMed  Google Scholar 

  44. Xue F., Willett WC, Rosner BA, Forman MR, Michels KB Parental characteristics as predictors of birthweight. Hum Reprod. 2008;23:168–177.

    Article  PubMed  Google Scholar 

  45. Gardner DS, Buttery PJ, Daniel Z., Symonds ME Factors affecting birth weight in sheep: maternal environment. Reproduction. 2007;133:297–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yakubu DP, Mostyn A., Wilson V., et al. Different effects of maternal parity, cold exposure and nutrient restriction in late pregnancy on the abundance of mitochondrial proteins in the kidney, liver and lung of postnatal sheep. Reproduction. 2007; 133:1241–1252.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Desai PhD.

Additional information

This work was supported by the National Institutes of Health K01 DK 063994 and the March of Dimes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desai, M., Han, G., Ferelli, M. et al. Programmed Upregulation of Adipogenic Transcription Factors in Intrauterine Growth-Restricted Offspring. Reprod. Sci. 15, 785–796 (2008). https://doi.org/10.1177/1933719108318597

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719108318597

Key words

Navigation