Skip to main content

Advertisement

Log in

Endometrial Gene Expression in Early Pregnancy: Lessons From Human Ectopic Pregnancy

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Human endometrium undergoes modifications in preparation for embryonic implantation. This study investigated in vivo the endocrine effects of pregnancy on the endometrium, using the model of ectopic pregnancy. Endometrial biopsies from 9 subjects with ectopic pregnancy (Preg) were compared with 8 and 6 samples of mid and late secretory endometrium, respectively. After hybridizing with Affymetrix HGU133 Plus 2 chips, data were analyzed using GeneSpring GX and Ingenuity Pathways Analysis. From 54 675 genes, 3021 genes were significantly differentiated when mid-secretory endometrium was compared with the Preg (Volcano plot; P < .05, ≥2-fold change). The complement and coagulation cascade, phospholid degradation, glycosphingolipid biosynthesis (globoseries), retinol metabolism, antigen presentation pathway, glycosphingolipid biosynthesis, and O-glycan biosynthesis were main significant canonical pathways found in Preg samples. Validation was done with reverse transcriptase polymerase chain reaction. In conclusion, the ectopic embryo has a significant impact, by an endocrine mechanism, on endometrium, when compared with the window of implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Noyes RW, Hertig AT, Rock J. Dating the endometrial biopsy. Fertil Steril. 1950;1:3–25.

    Article  Google Scholar 

  2. Lessey BA, Damjanovich L., Coutifaris C., Castelbaum A., Albelda SM, Buck CA Integrins adhesion molecules in the human endometrium. Correlation with the normal and abnormal menstrual cycle. J Clin Invest. 1992;90:188–195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Achache H., Revel A. Endometrial receptivity markers, the journey to successful embryo implantation. Hum Reprod Update. 2006;12:731–746.

    Article  PubMed  Google Scholar 

  4. Giudice LC, Irwin JC Roles of the insulinlike growth factor family in nonpregnant human endometrium and at the decidual:trophoblast interface. Semin Reprod Endocrinol. 1999;17:13–21.

    Article  CAS  PubMed  Google Scholar 

  5. Mooney SB, Giudice LC Fetal Endocrinology. Endotext.com; 2002.

  6. Carson DD, Lagow E., Thathiah A., et al. Changes in gene expression during the early to mid-luteal (receptive phase) transition in human endometrium detected by high-density microarray screening. Mol Hum Reprod. 2002;8:871–879.

    Article  CAS  PubMed  Google Scholar 

  7. Horcajadas JA, Riesewijk A., Martín J., et al. Global gene expression profiling of human endometrial receptivity. J Reprod Immunol. 2004;63:41–49.

    Article  CAS  PubMed  Google Scholar 

  8. Kao LC, Tulac S., Lobo S., et al. Global gene profiling in human endometrium during the window of implantation. Endocrinology. 2002;143:2119–2138.

    Article  CAS  PubMed  Google Scholar 

  9. Ponnampalam AP, Weston GC, Trajstman AC, Susil B., Rogers PA Molecular classification of human endometrial cycle stages by transcriptional profiling. Mol Hum Reprod. 2004;10:879–893.

    Article  CAS  PubMed  Google Scholar 

  10. Hess AP, Hamilton AE, Talbi S., et al. Decidual stromal cell response to paracrine signals from the trophoblast: amplification of immune and angiogenic modulators. Biol Reprod. 2007; 76:102–117.

    Article  CAS  PubMed  Google Scholar 

  11. Popovici RM, Betzler NK, Krause MS, et al. Gene expression profiling of human endometrial-trophoblast interaction in a coculture model. Endocrinology. 2006;147:5662–5675.

    Article  CAS  PubMed  Google Scholar 

  12. Sherwin JR, Sharkey AM, Cameo P., et al. Identification of novel genes regulated by chorionic gonadotropin in baboon endometrium during the window of implantation. Endocrinology. 2007;148:618–626.

    Article  CAS  PubMed  Google Scholar 

  13. Chen HW, Chen JJ, Tzeng CR, et al. Global analysis of differentially expressed genes in early gestational decidua and chorionic villi using a 9600 human cDNA microarray. Mol Hum Reprod. 2002;8:475–484.

    Article  CAS  PubMed  Google Scholar 

  14. Talbi S., Hamilton AE, Vo KC, et al. Molecular phenotyping of human endometrium distinguishes menstrual cycle phases and underlying biological processes in normo-ovulatory women. Endocrinology. 2006;147:1097–1121.

    Article  CAS  PubMed  Google Scholar 

  15. Liu P., Hwang JT Quick calculation for sample size while controlling false discovery rate with application to microarray analysis. Bioinformatics. 2007;23:739–746.

    Article  CAS  PubMed  Google Scholar 

  16. Breitling R. Biological microarray interpretation: the rules of engagement. Biochim Biophys Acta. 2006;1759:319–327.

    Article  CAS  PubMed  Google Scholar 

  17. Cui X., Churchill GA Statistical tests for differential expression in cDNA microarray experiments. Genome Biol. 2003;4:210.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Viera AJ, Garrett JM Understanding interobserver agreement: the kappa statistic. Fam Med. 2005;37:360–363.

    PubMed  Google Scholar 

  19. Soriano D., Hugol D., Quang NT, Darai E. Serum concentrations of interleukin-2R (IL-2R), IL-6, IL-8, and tumor necrosis factor alpha in patients with ectopic pregnancy. Fertil Steril. 2003;79:975–980.

    Article  PubMed  Google Scholar 

  20. Sallam HN, Sallam A., Ezzeldin F., Agamia AF, Abou-Ali A. Reference values for the midluteal plasma progesterone concentration: evidence from human menopausal gonadotropin-stimulated pregnancy cycles. Fertil Steril. 1999;71:711–714.

    Article  CAS  PubMed  Google Scholar 

  21. Critchley HO, Jones RL, Lea RG, et al. Role of inflammatory mediators in human endometrium during progesterone withdrawal and early pregnancy. J Clin Endocrinol Metab. 1999;84:240–248.

    CAS  PubMed  Google Scholar 

  22. Tierney EP, Tulac S., Huang ST, Giudice LC Activation of the protein kinase A pathway in human endometrial stromal cells reveals sequential categorical gene regulation. Physiol Genomics. 2003;16:47–66.

    Article  CAS  PubMed  Google Scholar 

  23. Burney RO, Talbi S., Hamilton AE, et al. Gene expression analysis of endometrium reveals progesterone resistance and candidate susceptibility genes in women with endometriosis. Endocrinology. 2007;148:3814–3826.

    Article  CAS  PubMed  Google Scholar 

  24. Tabibzadeh S., Kong QF, Babaknia A., May LT Progressive rise in the expression of interleukin-6 in human endometrium during menstrual cycle is initiated during the implantation window. Hum Reprod. 1995;10:2793–2799.

    Article  CAS  PubMed  Google Scholar 

  25. Otani T., Minami S., Kokawa K., Shikone T., Yamoto M., Nakano R. Immunohistochemical localization of activin A in human endometrial tissues during the menstrual cycle and in early pregnancy. Obstet Gynecol. 1998;91(5 Pt 1):685–692.

    CAS  PubMed  Google Scholar 

  26. Jones RL, Salamonsen LA, Zhao YC, Ethier JF, Drummond AE, Findlay JK Expression of activin receptors, follistatin and betaglycan by human endometrial stromal cells; consistent with a role for activins during decidualization. Mol Hum Reprod. 2002;8:363–374.

    Article  CAS  PubMed  Google Scholar 

  27. Grinius L., Kessler C., Schroeder J., Handwerger S. Forkhead transcription factor FOXO1A is critical for induction of human decidualization. J Endocrinol. 2006;189:179–187.

    Article  CAS  PubMed  Google Scholar 

  28. Labied S., Kajihara T., Madureira PA, et al. Progestins regulate the expression and activity of the forkhead transcription factor FOXO1 in differentiating human endometrium. Mol Endocrinol. 2006;20:35–44.

    Article  CAS  PubMed  Google Scholar 

  29. Sasaki A., Shinkawa O., Yoshinaga K. Placental corticotropinreleasing hormone may be a stimulator of maternal pituitary adrenocorticotropic hormone secretion in humans. J Clin Invest. 1989;84:1997–2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rogatsky I., Wang JC, Derynck MK, et al. Target-specific utilization of transcriptional regulatory surfaces by the glucocorticoid receptor. Proc Natl Acad Sci U S A. 2003;100: 13845–13850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tulac S., Nayak NR, Kao LC, et al. Identification, characterization, and regulation of the canonical Wnt signaling pathway in human endometrium.J Clin Endocrinol Metab. 2003;88:3860–3866.

    Article  CAS  PubMed  Google Scholar 

  32. Xu C., Mao D., Holers VM, Palanca B., Cheng AM, Molina H. A critical role for murine complement regulator crry in fetomaternal tolerance. Science. 2000;287:498–501.

    Article  CAS  PubMed  Google Scholar 

  33. Young SL, Lessey BA, Fritz MA, et al. In vivo and in vitro evidence suggest that HB-EGF regulates endometrial expression of human decay-accelerating factor. J Clin Endocrinol Metab. 2002;87:1368–1375.

    Article  CAS  PubMed  Google Scholar 

  34. Low JM, Moore TL A role for the complement system in rheumatoid arthritis. Curr Pharm Des. 2005;11:655–670.

    Article  CAS  PubMed  Google Scholar 

  35. Markiewski MM, Lambris JD The role of complement in inflammatory diseases from behind the scenes into the spotlight. Am J Pathol. 2007;171:715–727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Borregaard N., Theilgaard-Mönch K., Cowland JB, Ståhle M., Sørensen OE Neutrophils and keratinocytes in innate immunity-cooperative actions to provide antimicrobial defense at the right time and place.J Leukoc Biol. 2005;77:439–443.

    Article  CAS  PubMed  Google Scholar 

  37. Bratt T. Lipocalins and cancer. Biochim Biophys Acta. 2000; 1482:318–326.

    Article  CAS  PubMed  Google Scholar 

  38. Sørensen OE, Cowland JB, Theilgaard-Mönch K., Liu L., Ganz T., Borregaard N. Wound healing and expression of antimicrobial peptides/polypeptides in human keratinocytes, a consequence of common growth factors. J Immunol. 2003;170: 5583–5589.

    Article  PubMed  Google Scholar 

  39. Seth P., Porter D., Lahti-Domenici J., Geng Y., Richardson A., Polyak K. Cellular and molecular targets of estrogen in normal human breast tissue. Cancer Res. 2002;62:4540–4544.

    CAS  PubMed  Google Scholar 

  40. Yao MW, Lim H., Schust DJ, et al. Gene expression profiling reveals progesterone-mediated cell cycle and immunoregulatory roles of Hoxa-10 in the preimplantation uterus. Mol Endocrinol. 2003;17:610–627.

    Article  CAS  PubMed  Google Scholar 

  41. Ziegler S., Röhrs S., Tickenbrock L., et al. Lipocalin 24p3 is regulated by the Wnt pathway independent of regulation by iron. Cancer Genet Cytogenet. 2007;174:16–23.

    Article  CAS  PubMed  Google Scholar 

  42. Berger T., Togawa A., Duncan GS, et al. Lipocalin 2-deficient mice exhibit increased sensitivity to Escherichia coli infection but not to ischemia-reperfusion injury. Proc Natl Acad Sci U S A. 2006;103:1834–1839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Huang HL, Chu ST, Chen YH Ovarian steroids regulate 24p3 expression in mouse uterus during the natural estrous cycle and the preimplantation period. J Endocrinol. 1999;162:11–19.

    Article  CAS  PubMed  Google Scholar 

  44. King A., Burrows T., Verma S., Hiby S., Loke YW Human uterine lymphocytes. Hum Reprod Update. 1998;4:480–485.

    Article  CAS  PubMed  Google Scholar 

  45. Huddleston H., Schust DJ Immune interactions at the maternal-fetal interface: a focus on antigen presentation. Am J Reprod Immunol. 2004;51:283–289.

    Article  PubMed  Google Scholar 

  46. Lee N., Llano M., Carretero M., et al. HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A. Proc Natl Acad Sci U S A. 1998;95:5199–5204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Le BP, Tabiasco J. Killers become builders during pregnancy. Nat Med. 2006;12:991–992.

    Article  CAS  Google Scholar 

  48. Kobayashi Y. The role of chemokines in neutrophil biology. Front Biosci. 2008;13:2400–2407.

    Article  CAS  PubMed  Google Scholar 

  49. Foell D., Wittkowski H., Vogl T., Roth J. S100 proteins expressed in phagocytes: a novel group of damage-associated molecular pattern molecules. J Leukoc Biol. 2007;81:28–37.

    Article  CAS  PubMed  Google Scholar 

  50. Dong JC, Dong H., Campana A., Bischof P. Matrix metalloproteinases and their specific tissue inhibitors in menstruation. Reproduction. 2002;123:621–631.

    Article  CAS  PubMed  Google Scholar 

  51. Zhai Y., Wu R., Schwartz DR, et al. Role of beta-catenin/ T-cell factor-regulated genes in ovarian endometrioid adenocarcinomas. Am J Pathol. 2002;160:1229–1238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Raouf A., Li V., Kola I., Watson DK, Seth A. The Ets1 proto-oncogene is upregulated by retinoic acid: characterization of a functional retinoic acid response element in the Ets1 promoter. Oncogene. 2000;19:1969–1974.

    Article  CAS  PubMed  Google Scholar 

  53. Takeshita S., Kikuno R., Tezuka K., Amann E. Osteoblast-specific factor 2: cloning of a putative bone adhesion protein with homology with the insect protein fasciclin I. Biochem J. 1993;294(Pt 1):271–278.

    Article  CAS  PubMed  Google Scholar 

  54. Gillan L., Matei D., Fishman DA, Gerbin CS, Karlan BY, Chang DD Periostin secreted by epithelial ovarian carcinoma is a ligand for alpha(V)beta(3) and alpha(V)beta(5) integrins and promotes cell motility. Cancer Res. 2002;62:5358–5364.

    CAS  PubMed  Google Scholar 

  55. Horiuchi K., Amizuka N., Takeshita S., et al. Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. J Bone Miner Res. 1999;14:1239–1249.

    Article  CAS  PubMed  Google Scholar 

  56. Sasaki H., Lo KM, Chen LB, et al. Expression of periostin, homologous with an insect cell adhesion molecule, as a prognostic marker in non-small cell lung cancers. Jpn J Cancer Res. 2001;92:869–873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Litvin J., Chen X., Keleman S., Zhu S., Autieri M. Expression and function of periostin-like factor in vascular smooth muscle cells. Am J Physiol Cell Physiol. 2007;292:C1672–C1680.

    Article  CAS  PubMed  Google Scholar 

  58. Grigoriadis A., Mackay A., Reis-Filho JS, et al. Establishment of the epithelial-specific transcriptome of normal and malignant human breast cells based on MPSS and array expression data. Breast Cancer Res. 2006;8:R56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Kudo Y., Siriwardena BS, Hatano H., Ogawa I., Takata T. Periostin: novel diagnostic and therapeutic target for cancer. Histol Histopathol. 2007;22:1167–1174.

    CAS  PubMed  Google Scholar 

  60. Oka T., Xu J., Kaiser RA, et al. Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling. Circ Res. 2007;101:313–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yoshiba N., Yoshiba K., Hosoya A., et al. Association of TIMP-2 with extracellular matrix exposed to mechanical stress and its co-distribution with periostin during mouse mandible development. Cell Tissue Res. 2007;330:133:145.

    Google Scholar 

  62. Floridon C., Nielsen O., Hølund B., et al. Does plasminogen activator inhibitor-1 (PAI-1) control trophoblast invasion? A study of fetal and maternal tissue in intrauterine, tubal and molar pregnancies. Placenta. 2000;21:754–762.

    Article  CAS  PubMed  Google Scholar 

  63. Lockwood CJ, Krikun G., Papp C., et al. The role of progestationally regulated stromal cell tissue factor and type-1 plasminogen activator inhibitor (PAI-1) in endometrial hemostasis and menstruation. Ann N Y Acad Sci. 1994;734:57–79.

    Article  CAS  PubMed  Google Scholar 

  64. Dossenbach-Glaninger A., van Trotsenburg M., Dossenbach M., et al. Plasminogen activator inhibitor 1 4G/5G polymorphism and coagulation factor XIII Val34Leu polymorphism: impaired fibrinolysis and early pregnancy loss. Clin Chem. 2003;49:1081–1086.

    Article  CAS  PubMed  Google Scholar 

  65. Smith SK Regulation of angiogenesis in the endometrium. Trends Endocrinol Metab. 2001;12:147–151.

    Article  CAS  PubMed  Google Scholar 

  66. Strieter RM, Kunkel SL, Elner VM, et al. Interleukin-8. A corneal factor that induces neovascularization. Am J Pathol. 1992;141:1279–1284.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Iozzo RV The family of the small leucine-rich proteoglycans: key regulators of matrix assembly and cellular growth. Crit Rev Biochem Mol Biol. 1997;32:141–174.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda C. Giudice MD, PhD, MSc.

Additional information

Supported by the NICHD/NIH through cooperative agreement 1U54HD055764-01 (LCG) and U54-HD35041 (BAL) as part of the Specialized Cooperative Centers Program in Reproduction and Infertility Research (LCG) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) BEX3656-06-3 (RFS). Samples were collected at Hospital de Clínicas de Porto Alegre. Data analysis and RT-PCR were performed at University of California, San Francisco. Immunohistochemistry was performed at Greenville Hospital System.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savaris, R.F., Hamilton, A.E., Lessey, B.A. et al. Endometrial Gene Expression in Early Pregnancy: Lessons From Human Ectopic Pregnancy. Reprod. Sci. 15, 797–816 (2008). https://doi.org/10.1177/1933719108317585

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719108317585

Key words

Navigation