Skip to main content

Advertisement

Log in

Hypoxia Modulation of Caveolin-1 and Vascular Endothelial Growth Factor in Ovine Fetal Membranes

  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

During normal pregnancy, amniotic fluid is absorbed from the amniotic compartment into fetal blood through the intramembranous blood vessels in the fetal membranes. It has been hypothesized that this transport process is mediated by transcytosis of caveolae-like vesicles. Because fetal hypoxia increases intramembranous absorption, the authors explore the effects of hypoxia on the gene expression of caveolin-1, a structural protein of caveolae, in ovine fetal membranes and cultured amnion cells. Near-term ovine fetuses were rendered hypoxic for 4 days. Caveolin-1 mRNA and protein levels were significantly reduced in the amnion and chorion but not in the placenta. In cultured ovine amnion cells incubated in 2% oxygen for 24 hours, hypoxia did not significantly alter caveolin-1 mRNA or protein expression. vascular endothelial growth factor mRNA levels were increased in response to hypoxia in the fetal membranes as well as in cultured amnion cells. The results indicate that hypoxia does not augment but instead down-regulates or has no effect on caveolin-1 gene expression in the amnion and chorion, suggesting that caveolin-1 may play a role as a negative regulator of amnion transport function under hypoxic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gilbert WM, Brace RA. The missing link in amniotic fluid volume regulation: Intramembranous absorption. Obstet Gynecol. 1989;74:748–754.

    CAS  PubMed  Google Scholar 

  2. Matsumoto LC, Cheung CY, Brace RA. Effect of esophageal ligation on amniotic fluid volume and urinary flow rate in fetal sheep. Am J Obstet Gynecol. 2000;182:699–705.

    Article  CAS  PubMed  Google Scholar 

  3. Matsumoto LC, Cheung CY, Brace RA. Increased urinary flow without development of polyhydramnios in response to prolonged hypoxia in the ovine fetus. Am J Obstet Gynecol. 2001;184:1008–1014.

    Article  CAS  PubMed  Google Scholar 

  4. Daneshmand SS, Cheung CY, Brace RA. Regulation of amniotic fluid volume by intramembranous absorption in sheep: role of passive permeability and vascular endothelial growth factor. Am J Obstet Gynecol. 2003;188:786–793.

    Article  PubMed  Google Scholar 

  5. Faber JJ, Anderson DF. Regulatory response of intramembranous absorption of amniotic fluid to infusion of exogenous fluid in sheep. Am J Physiol. 1999;277:R236–R242.

    CAS  PubMed  Google Scholar 

  6. Faber JJ, Anderson DF. Absorption of amniotic fluid by amniochorion in sheep. Am J Physiol. 2002;282:H850–H854.

    CAS  Google Scholar 

  7. Brace RA, Vermin ML, Huijssoon E. Regulation of amniotic fluid volume: intramembranous solute and volume fluxes in late gestation fetal sheep. Am J Obstet Gynecol. 2004;191: 837–846.

    Article  PubMed  Google Scholar 

  8. Cheung CY, Vascular endothelial growth factor activation of intramembranous absorption: a critical pathway for amniotic fluid volume regulation. J Soc Gynecol Invest. 2004;11:63–74.

    Article  CAS  Google Scholar 

  9. Ahmed A, Li XF, Dunk C, Whittle MJ, Rushton DI, Rollason T. Colocalisation of vascular endothelial growth factor and its flt-1 receptor in human placenta. Growth Factors. 1995;12:235–243.

    Article  CAS  PubMed  Google Scholar 

  10. Clark DE, Smith SK, Sharkey AM, Charnock-Jones DS. Localization of VEGF and expression of its receptors flt and KDR in human placenta throughout pregnency. Hum Reprod. 1996;11:1090–1098.

    Article  CAS  PubMed  Google Scholar 

  11. Cheung CY, Brace RA. Developmental expression of vascular endothelial growth factor and its receptors in ovine placenta and fetal membranes. J Soc Gynecol Invest. 1999;6:179–185.

    Article  CAS  Google Scholar 

  12. Bogic LV, Brace RA, Cheung CY. Developmental expression of vascular endothelial growth factor (VEGF) receptors and VEGF binding in ovine placenta and fetal membranes. Placenta. 2001;22:265–275.

    Article  CAS  PubMed  Google Scholar 

  13. Tsoi SCM, Wen Y, Chung JY, Chen D, Magness RR, Zheng J. Co-expression of vascular endothelial growth factor and neuropilin-1 in ovine feto-placental artery endothelial cells. Mol Cell Endocrinol. 2002;196:95–106.

    Article  CAS  PubMed  Google Scholar 

  14. Gagnon R, Harding R, Brace RA. Amniotic fluid and fetal urinary responses to severe placental insufficiency in sheep. Am J Obstet Gynecol. 2002;186:1076–1084.

    Article  PubMed  Google Scholar 

  15. Matsumoto LC, Bogic L, Brace RA, Cheung CY. Prolonged hypoxia upregulates vascular endothelial growth factor messenger RNA expression in ovine fetal membranes and placenta. Am J Obstet Gynecol. 2002;186:303–310.

    Article  CAS  PubMed  Google Scholar 

  16. Matsumoto LC, Bogic L, Brace RA, Cheung CY. Fetal esophageal ligation induces expression of vascular endothelial growth factor messenger ribonucleic acid in fetal membranes. Am J Obstet Gynecol. 2001;184:175–184.

    Article  CAS  PubMed  Google Scholar 

  17. Feng Y, Venema VJ, Venema RC, Tsai N, Behzadian MA, Caldwell RB. VEGF-induced permeability increase is mediated by caveolae. Invest Opthalmol Vis Sci. 1999;40:157–167.

    CAS  Google Scholar 

  18. Chen J, Braet F, Brodsky S, et al.VEGF-induced mobilization of caveolae and increase in permeability of endothelial cells. Am J Physiol Cell Physiol. 2002;282:C1053–C1063.

    Article  CAS  PubMed  Google Scholar 

  19. Lyden TW, Anderson CL, Robinson JM. The endothelium but not the syncytiotrophoblast of human placenta expresses caveolae. Placenta. 2002;23:640–652.

    Article  PubMed  Google Scholar 

  20. Linton EA, Rodriguez-Linares B, Rashid-Doubell F, Ferguson DJP, Redman CWG. Caveolae and caveolin-1 in human term villous trophoblast. Placenta. 2003;24:745–757.

    Article  CAS  PubMed  Google Scholar 

  21. Byrne S, Cheent A, Dimond J, Fisher G, Ockleford CD. Immunocytochemical localization of a caveolin-1 isoform in human term extra-embryonic membranes using confocal laser scanning microscopy: implications for the complexity of the materno-fetal junction. Placenta. 2001;22:499–510.

    Article  CAS  PubMed  Google Scholar 

  22. Thurlow RW, Brace RA. Swallowing, urine flow, and amniotic fluid volume responses to prolonged hypoxia in the ovine fetus. Am J Obstet Gynecol. 2003;189:601–608.

    Article  PubMed  Google Scholar 

  23. Cheung CY, Singh M, Ebaugh MJ, Brace RA. Vascular endothelial growth factor gene expression in ovine placenta and fetal membranes. Am J Obstet Gynecol. 1995;173:753–759.

    Article  CAS  PubMed  Google Scholar 

  24. Cheung CY, Brace RA. Ovine vascular endothelial growth factor: nucleotide sequence and expression in fetal tissues. Growth Factor. 1998;16:11–22.

    Article  CAS  Google Scholar 

  25. Chen D-B, Zangl AL, Zhao Q, et al. Ovine caveolin-1: cDNA cloning, E. coli expression, and association with endothelial nitric oxide synthase. Mol Cell Endocrinol. 2001; 175:41–56.

    Article  CAS  PubMed  Google Scholar 

  26. Chen D-B, Li S-M, Qian X-X, Moon C, Zheng J. Tyrosine phosphorylation of caveolin 1 by oxidative stress is reversible and dependent on the c-src tyrosine kinase but not mitogenactivated protein kinase pathways in placental artery endothelial cells. Biol Reprod. 2005;73:761–772.

    Article  CAS  PubMed  Google Scholar 

  27. Chen D-B, Westfall SD, Fong HW, Roberson MS, Davis JS. Prostaglandin F2α stimulates the Raf/MEK 1/mitogen-activated proteini kinase signaling cascade in bovine luteal cells. Endocrinology. 1998;139:3876–3885.

    Article  CAS  PubMed  Google Scholar 

  28. Wu MH, Yuan SY, Granger HJ. The protein kinase MEK 1/2 mediate vascular endothelial growth factor- and histamine-induced hyperpermeability in porcine coronary venules. J Physiol. 2005;563(1):95–104.

    Article  CAS  PubMed  Google Scholar 

  29. Aramoto H, Breslin JW, Pappas PJ, Hobson RW II, Duran WN. Vascular endothelial growth factor stimulates differential signaling pathways in in vivo microcirculation. Am J Physiol Heart Circ Physiol. 2004;287:H1590–H1598.

    Article  CAS  PubMed  Google Scholar 

  30. Kevil CG, Payne DK, Mire E, Alexander JS. Vascular permeability factor/vascular endothelial cell growth factor-mediated permeability occurs through disorganization of endothelial junctional proteins. J Biol Chem. 1998;273:15099–15103.

    Article  CAS  PubMed  Google Scholar 

  31. Erikksson A, Cao R, Roy J, et al. Small GTP-binding protein rac is an essential mediator of vascular endothelial growth factor-induced endothelial fenestrations and vascular permeability. Circulation. 2003;107:1532–1538.

    Article  Google Scholar 

  32. Bauer PM, Yu J, Chen Y, et al. Endothelial-specific expression of caveolin-1 impairs microvascular permeability and angiogenesis. Proc Natl Acad Sci U S A. 2005;102:204–209.

    Article  CAS  PubMed  Google Scholar 

  33. Schubert W, Frank PG, Woodman SE, et al. Microvascular hyperpermeability in caveolin-1 (-/-) knock-out mice.JBiol Chem. 2002;277:40091–40098.

    Article  CAS  Google Scholar 

  34. Murata T, Yamawaki H, Hori M, Sato K, Ozaki H, Karaki H. Hypoxia impairs endothelium-dependent relaxation in organ cultured pulmonary artery. Eur J Pharm. 2001;421:45–53.

    Article  CAS  Google Scholar 

  35. Fike CD, Aschner JL, Zhang Y, Kaplowitz MR. Impaired nitric oxide signaling in small arteries of chronically hypoxic newborn piglets. Am J Physiol Lung Cell Mol Physiol. 2004; 286: L1244–L1254.

    Article  CAS  PubMed  Google Scholar 

  36. Regina A, Jodoin J, Khoueir P, et al. Down-regulation of caveolin-1 in glioma vasculature: modulation by radiotherapy. J Neurosci Res. 2004;75:291–299.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Y. Cheung PhD.

Additional information

This work was supported in part by grants HD 35890 and HD 33054 from the National Institute of Child Health and Human Development. The ovine caveolin-1 cDNA sequence was provided by Dr Dongbao Chen. Dr Chen also served as a scientific consultant for the project.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheung, C.Y., Brace, R.A. Hypoxia Modulation of Caveolin-1 and Vascular Endothelial Growth Factor in Ovine Fetal Membranes. Reprod. Sci. 15, 469–476 (2008). https://doi.org/10.1177/1933719107312561

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719107312561

Key words

Navigation