Skip to main content

Advertisement

Log in

Expression and Distribution of Glucocorticoid Receptors in the Ovine Fetal Adrenal Cortex: Effect of Long-term Hypoxia

  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

This study was designed to determine if long-term hypoxia (LTH) alters adrenal glucocorticoid receptor (GR) expression in the ovine fetal adrenal cortex. Ewes were maintained at 3820 m from ∼30 to 138 to 140 days’ gestation, and fetal adrenals were collected. Western analysis revealed two ∼94-kDa GR-α isoforms and a lower molecular weight (45 kDa) form. A decreasing trend in the ratio of 94-kDa/45-kDa bands following LTH suggested an increase in GR turnover. Immunohistochemistry demonstrated dense GR staining in the zona glomerulosa with minimal staining in the zona fasciculata in the control group, while dense staining was observed throughout the cortex in LTH. Western analysis and reverse transcription polymerase chain reaction confirmed that the GR-β isoform is not present or expressed at extremely low levels in the fetal adrenal, hypothalamus, pituitary, and placenta. These data indicate that LTH alters GR-α function in the fetal adrenal cortex and suggest that GR-β is not expressed in sheep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boddy K, Jones CT, Mantell C, Ratcliffe JG, Robinson JS. Changes in plasma ACTH and corticosteroid of the maternal and fetal sheep during hypoxia. Endocrinology. 1974;94:588–591.

    Article  CAS  PubMed  Google Scholar 

  2. Akagi K, Challis JR. Relationship between blood gas values and hormonal response to acute hypoxemia in fetal sheep. Gynecol Obstet Invest. 1990;30:65–70.

    Article  CAS  PubMed  Google Scholar 

  3. Adachi K, Umezaki H, Kaushal KM, Ducsay CA. Long-term hypoxia alters ovine fetal endocrine and physiological responses to hypotension. Am J Physiol Regul Integr Comp Physiol. 2004; 287:R209–R217.

    Article  CAS  PubMed  Google Scholar 

  4. Imamura T, Umezaki H, Kaushal KM, Ducsay CA. Long-term hypoxia alters endocrine and physiologic responses to umbilical cord occlusion in the ovine fetus. J Soc Gynecol Investig. 2004;11:131–140.

    Article  CAS  PubMed  Google Scholar 

  5. Myers DA, Bell PA, Hyatt K, Mlynarczyk M, Ducsay CA. Long-term hypoxia enhances proopiomelanocortin processing in the near-term ovine fetus. Am J Physiol Regul Integr Comp Physiol. 2005;288:R1178–R1184.

    Article  CAS  PubMed  Google Scholar 

  6. Jensen EC, Gallaher BW, Breier BH, Harding JE. The effect of a chronic maternal cortisol infusion on the late-gestation fetal sheep. J Endocrinol. 2002;174:27–36.

    Article  CAS  PubMed  Google Scholar 

  7. Milley JR. Effects of increased cortisol concentration on ovine fetal leucine kinetics and protein metabolism. Am J Physiol. 1995;268:E1114–E1122.

    Article  CAS  PubMed  Google Scholar 

  8. Fowden AL, Szemere J, Hughes P, Gilmour RS, Forhead AJ. The effects of cortisol on the growth rate of the sheep fetus during late gestation. J Endocrinol. 1996;151:97–105.

    Article  CAS  PubMed  Google Scholar 

  9. Liggins GC, Fairclough RJ, Grieves SA, Kendall JZ, Knox BS. The mechanism of initiation of parturition in the ewe. Recent Prog Horm Res. 1973;29:111–159.

    CAS  PubMed  Google Scholar 

  10. Liggins GC, Fairclough RJ, Grieves SA, Forster CS, Knox BS. Parturition in the sheep. Ciba Found Symp. 1977:5–30.

  11. Challis JR, Brooks AN. Maturation and activation of hypothalamic-pituitary adrenal function in fetal sheep. Endocr Rev. 1989;10:182–204.

    Article  CAS  PubMed  Google Scholar 

  12. Yang K, Challis JR. Fetal and adult sheep adrenal cortical cells contain glucocorticoid receptors. Biochem Biophys Res Commun. 1989;162:604–611.

    Article  CAS  PubMed  Google Scholar 

  13. Darbeida H, Naaman E, Durand P. Glucocorticoid induction of the maturation of ovine fetal adrenocortical cells. Biochem Biophys Res Commun. 1987;145:999–1005.

    Article  CAS  PubMed  Google Scholar 

  14. Picard-Hagen N, Darbeida H, Durand P. Glucocorticoids enhance the cholesterol side-chain cleavage activity of ovine adrenocortical mitochondria.J Steroid Biochem Mol Biol. 1995; 55:57–65.

    Article  CAS  PubMed  Google Scholar 

  15. Yang K, Hammond GL, Challis JR. Characterization of an ovine glucocorticoid receptor cDNA and developmental changes in its mRNA levels in the fetal sheep hypothalamus, pituitary gland and adrenal. J Mol Endocrinol. 1992;8: 173–180.

    Article  CAS  PubMed  Google Scholar 

  16. Bamberger CM, Schulte HM, Chrousos GP. Molecular determinants of glucocorticoid receptor function and tissue sensitivity to glucocorticoids. Endocr Rev. 1996;17:245–261.

    Article  CAS  PubMed  Google Scholar 

  17. Aranda A, Pascual A. Nuclear hormone receptors and gene expression. Physiol Rev. 2001;81:1269–1304.

    Article  CAS  PubMed  Google Scholar 

  18. Hollenberg SM, Weinberger C, Ong ES, et al. Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature. 1985;318:635–641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Giguere V, Hollenberg SM, Rosenfeld MG, Evans RM. Functional domains of the human glucocorticoid receptor. Cell. 1986;46:645–652.

    Article  CAS  PubMed  Google Scholar 

  20. Oakley RH, Sar M, Cidlowski JA. The human glucocorticoid receptor beta isoform: expression, biochemical properties, and putative function. J Biol Chem. 1996;271:9550–9559.

    Article  CAS  PubMed  Google Scholar 

  21. Oakley RH, Jewell CM, Yudt MR, Bofetiado DM, Cidlowski JA. The dominant negative activity of the human glucocorticoid receptor beta isoform: specificity and mechanisms of action. J Biol Chem. 1999;274:27857–27866.

    Article  CAS  PubMed  Google Scholar 

  22. Hecht K, Carlstedt-Duke J, Stierna P, Gustafsson J, Bronnegard M, Wikstrom AC. Evidence that the beta-isoform of the human glucocorticoid receptor does not act as a physiologically significant repressor. J Biol Chem. 1997;272: 26659–26664.

    Article  CAS  PubMed  Google Scholar 

  23. Otto C, Reichardt HM, Schutz G. Absence of glucocorticoid receptor-beta in mice.J Biol Chem. 1997;272:26665–26668.

    Article  CAS  PubMed  Google Scholar 

  24. Yudt MR, Cidlowski JA. Molecular identification and characterization of a and b forms of the glucocorticoid receptor. Mol Endocrinol. 2001;15:1093–1103.

    Article  CAS  PubMed  Google Scholar 

  25. Lu NZ, Cidlowski JA. Translational regulatory mechanisms generate N-terminal glucocorticoid receptor isoforms with unique transcriptional target genes. Mol Cell. 2005;18: 331–342.

    Article  CAS  PubMed  Google Scholar 

  26. Duma D, Jewell CM, Cidlowski JA. Multiple glucocorticoid receptor isoforms and mechanisms of post-translational modification. J Steroid Biochem Mol Biol. 2006;102:11–21.

    Article  CAS  PubMed  Google Scholar 

  27. Leonard MO, Godson C, Brady HR, Taylor CT. Potentiation of glucocorticoid activity in hypoxia through induction of the glucocorticoid receptor. J Immunol. 2005;174:2250–2257.

    Article  CAS  PubMed  Google Scholar 

  28. Inouye KE, Chan O, Yue JT, Matthews SG, Vranic M. Effects of diabetes and recurrent hypoglycemia on the regulation of the sympathoadrenal system and hypothalamo-pituitary-adrenal axis. Am J Physiol Endocrinol Metab. 2005;288:E422–E429.

    Article  CAS  PubMed  Google Scholar 

  29. Paust HJ, Loeper S, Else T, et al. Expression of the glucocorticoid receptor in the human adrenal cortex. Exp Clin Endocrinol Diabetes. 2006;114:6–10.

    Article  CAS  PubMed  Google Scholar 

  30. Condon J, Gosden C, Gardener D, et al. Expression of type 2 11beta-hydroxysteroid dehydrogenase and corticosteroid hormone receptors in early human fetal life. J Clin Endocrinol Metab. 1998;83:4490–4497.

    CAS  PubMed  Google Scholar 

  31. Mlynarczyk M, Imamura T, Umezaki H, Kaushal KM, Zhang L, Ducsay CA. Long-term hypoxia changes myometrial responsiveness and oxytocin receptors in the pregnant ewe: differential effects on longitudinal versus circular smooth muscle. Biol Reprod. 2003;69:1500–1505.

    Article  CAS  PubMed  Google Scholar 

  32. Myers DA, Hyatt K, Mlynarczyk M, Bird IM, Ducsay CA. Long-term hypoxia represses the expression of key genes regulating cortisol biosynthesis in the near-term ovine fetus. Am J Physiol Regul Integr Comp Physiol. 2005;289: R1707–R1714.

    Article  CAS  PubMed  Google Scholar 

  33. Ducsay CA, Hyatt K, Mlynarczyk M, Kaushal KM, Myers DA. Long-term hypoxia increases leptin receptors and plasma leptin concentrations in the late-gestation ovine fetus. Am J Physiol Regul Integr Comp Physiol. 2006;291: R1406–R1413.

    Article  CAS  PubMed  Google Scholar 

  34. Ehrhart-Bornstein M, Hinson JP, Bornstein SR, Scherbaum WA, Vinson GP. Intraadrenal interactions in the regulation of adrenocortical steroidogenesis. Endocr Rev. 1998;19: 101–143.

    Article  CAS  PubMed  Google Scholar 

  35. Saoud CJ, Wood CE. Developmental changes and molecular weight of immunoreactive glucocorticoid receptor protein in the ovine fetal hypothalamus and pituitary. Biochem Biophys Res Commun. 1996;229:916–921.

    Article  CAS  PubMed  Google Scholar 

  36. Gupta S, Gyomorey S, Lye SJ, Gibb W, Challis JR. Effect of labor on glucocorticoid receptor (GR(Total), GRalpha, and GRbeta) proteins in ovine intrauterine tissues. J Soc Gynecol Investig. 2003;10:136–144.

    Article  CAS  PubMed  Google Scholar 

  37. Betito K, Diorio J, Meaney MJ, Boksa P. Adrenal phenylethanolamine N-methyltransferase induction in relation to glucocorticoid receptor dynamics: evidence that acute exposure to high cortisol levels is sufficient to induce the enzyme. J Neurochem. 1992;58:1853–1862.

    Article  CAS  PubMed  Google Scholar 

  38. Tai TC, Claycomb R, Her S, Bloom AK, Wong DL. Glucocorticoid responsiveness of the rat phenylethanolamine N-methyltransferase gene. Mol Pharmacol. 2002;61:1385–1392.

    Article  CAS  PubMed  Google Scholar 

  39. Ebert SN, Balt SL, Hunter JP, Gashler A, Sukhatme V, Wong DL. Egr-1 activation of rat adrenal phenylethanolamine N-methyltransferase gene. J Biol Chem. 1994;269: 20885–20898.

    CAS  PubMed  Google Scholar 

  40. Wong DL, Siddall BJ, Ebert SN, Bell RA, Her S. Phenylethanolamine N-methyltransferase gene expression: synergistic activation by Egr-1, AP-2 and the glucocorticoid receptor. Brain Res Mol Brain Res. 1998;61:154–161.

    Article  CAS  PubMed  Google Scholar 

  41. Ducsay CA, Hyatt K, Mlynarczyk M, Root BK, Kaushal KM, Myers DA. Long term hypoxia modulates expression of key genes regulating adrenomedullary function in the late gestation ovine fetus. Am J Physiol Regul Integr Comp Physiol. 2007;293: R1997–R2005.

    Article  CAS  PubMed  Google Scholar 

  42. Wong DL, Tai TC, Wong-Faull DC, Claycomb R, Kvetnansky R. Genetic mechanisms for adrenergic control during stress. Ann N Y Acad Sci. 2004;1018:387–397.

    Article  CAS  PubMed  Google Scholar 

  43. Oakley RH, Webster JC, Sar M, Parker CR Jr, Cidlowski JA. Expression and subcellular distribution of the beta-isoform of the human glucocorticoid receptor. Endocrinology. 1997;138: 5028–5038.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles A. Ducsay PhD.

Additional information

Supported by the National Institutes of Health grants HD33147 (DAM) and HD31226 (CAD).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Root, B., Abrassart, J., Myers, D.A. et al. Expression and Distribution of Glucocorticoid Receptors in the Ovine Fetal Adrenal Cortex: Effect of Long-term Hypoxia. Reprod. Sci. 15, 517–528 (2008). https://doi.org/10.1177/1933719107311782

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719107311782

Key words

Navigation