Skip to main content
Log in

Relaxin and the Human Fetal Membranes

  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The human fetal membranes are complex tissues that perform many important functions during gestation. The extracellular matrix provides their strength to withstand the forces directed from the fetus and myometrium. Relaxin is a collagenolytic hormone that causes increased production of the matrix metalloproteinases. Its expression from the decidua is increased in patients with preterm premature rupture of the membranes, and its leucine-rich G receptor 7 is upregulated at preterm. The authors previously showed that relaxin is not involved in the infection-mediated cytokine response, but in the absence of infection, it causes increased secretion of both interleukin -6 and interleukin-8 from the membranes. In this article, the authors propose that relaxin is one of a number of sterile stimuli capable of causing increased proinflammatory cytokines, similar to but less robust than the effects of infection. These probably represent distinct inflammatory pathways involving different intracellular signaling events, which can result in either preterm premature rupture of the membranes or preterm labor. The current challenge is to fully understand these pathways and to clarify their similarities and differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bryant-Greenwood GD The extracellular matrix of the human fetal membranes: structure and function. Placenta. 1998;19:1–11.

    Article  CAS  PubMed  Google Scholar 

  2. Pressman EK, Cavanaugh JL, Woods JR Physical properties of the chorioamnion throughout gestation. Am J Obstet Gynecol. 2002;187:672–675.

    PubMed  Google Scholar 

  3. Parry S., Strauss JF Premature rupture of the fetal membranes. N Engl J Med. 1998;338:663–670.

    Article  CAS  PubMed  Google Scholar 

  4. Koay ESC, Too CKL, Greenwood FC, et al. Relaxin stimulates collagenase and plasminogen activator secretion by dispersed human amnion and chorion cells in vitro. J Clin Endocr Metab. 1983;56:1332–1334.

    Article  CAS  PubMed  Google Scholar 

  5. Tashima LS, Yamamoto SY, Yasuda M, et al. Decidual relaxins: gene and protein upregulation in preterm premature rupture of the membranes by complementary DNA arrays and quantitative immunocytochemistry. Am J Obstet Gynecol. 2002;187:785–797.

    Article  CAS  PubMed  Google Scholar 

  6. Qin X., Garibay-Tupas JL, Chua PK, et al. An autocrine/paracrine role of human decidual relaxin. I. Interstitial collagenase (MMP-1) and tissue plasminogen activator. Biol Reprod. 1997;56:800–811.

    Article  CAS  PubMed  Google Scholar 

  7. Qin X., Chua PK, Ohira RH, et al. An autocrine/paracrine role of human decidual relaxin. II. Stromelysin-1 (MMP-3) and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1). Biol Reprod. 1997;56:812–820.

    Article  CAS  PubMed  Google Scholar 

  8. Garibay-Tupas JL, Maaskant RA, Greenwood FC, et al. Characteristics of the binding of 32P-labelled human relaxins to the human fetal membranes. J Endocr. 1995;145:441–448.

    Article  CAS  PubMed  Google Scholar 

  9. Lowndes K., Amano A., Yamamoto SY, et al.The human relaxin receptor (LGR7): expression in the fetal membranes and placenta. Placenta. 2006;27:610–618.

    Article  CAS  PubMed  Google Scholar 

  10. Mazella J., Tang M., Tseng L. Disparate effects of relaxin and TGFβ1: relaxin increases, but TGFβ1 inhibits, the relaxin and relaxin receptor and production of IGFBP-1 in human endometrial stromal/decidual cells. Hum Reprod. 2004;19: 1513–1518.

    Article  CAS  PubMed  Google Scholar 

  11. Kern A., Agoulnik AI, Bryant-Greenwood GD The LDL-A module of the relaxin receptor (LGR7): its role in signaling and trafficking to the cell membrane. Endocrinology. 2007;148: 1181–1194.

    Article  CAS  PubMed  Google Scholar 

  12. Kern A., Amano A., Bryant-Greenwood GD Identification and functional characterization of the relaxin receptor (LGR7) splice variants in the human decidua. Presented at: the Society for Gynecologic Investigation; 2007. Abstract 322.

  13. Oxlund H., Helmig R., Halaburt JT, et al. Biomechanical analysis of human chorioamniotic membranes. Eur J Obstet Gynecol Reprod Biol. 1990;34:247–255.

    Article  CAS  PubMed  Google Scholar 

  14. Benson-Martin J., Zammaretti P., Bilic G, et al. The Young’s modulus of fetal preterm and term amniotic membranes. Eur J Obstet Gynecol Reprod Biol. 2006;128:103–107.

    Article  PubMed  Google Scholar 

  15. Oyen ML, Calvin SE, Landers DV Premature rupture of the fetal membranes: is the amnion the major determinant?Am J Obstet Gynecol. 2006;195:510–515.

    Article  PubMed  Google Scholar 

  16. Moore RM, Mansour JM, Redline RW, et al.The physiology of fetal membrane rupture: insight gained from the determination of physical properties. Placenta. 2006;27:1037–1051.

    Article  CAS  PubMed  Google Scholar 

  17. Arikat S., Novince RW, Mercer BM, et al. Separation of amnion from choriodecidua is an integral event to the rupture of normal term fetal membranes and constitutes a significant component of the work required. Am J Obstet Gynecol. 2006;194:211–217.

    Article  PubMed  Google Scholar 

  18. Meinert M., Eriksen GV, Petersen AC, et al. Proteoglycans and hyaluronan in human fetal membranes. Am J Obstet Gynecol. 2001;184:679–685.

    Article  CAS  PubMed  Google Scholar 

  19. Fawthrop RK, Ockleford CD Cryofracture of human term amniochorion. Cell Tissue Res. 1994;277:315–323.

    Article  CAS  PubMed  Google Scholar 

  20. Ockleford C., Malak T., Hubbard A, et al. Confocal and conventional immunofluorescence and ultrastructural localization of intracellular strength-giving components of human amniochorion. J Anat. 1993;183:483–505.

    PubMed  PubMed Central  Google Scholar 

  21. Malak TM, Bell SC Structural characteristics of term human fetal membranes: a novel zone of extreme morphological alteration within the rupture site. Br J Obstet Gynecol. 1994; 101:375–386.

    Article  CAS  Google Scholar 

  22. Quintero RA, Morales WJ, Kalter CS, et al. Transabdominal intra-amniotic endoscopic assessment of previable premature rupture of membranes. Am J Obstet Gynecol. 1998;179:71–76.

    Article  CAS  PubMed  Google Scholar 

  23. Khwad ME, Stetzer B., Moore RM, et al. Term human fetal membranes have a weak zone overlying the lower uterine pole and cervix before the onset of labor. Biol Reprod. 2005;72:720–726.

    Article  PubMed  Google Scholar 

  24. Osman I., Young A., Jordan F, et al. Leukocyte density and proinflammatory mediator expression in regional human fetal membranes and decidua before and during labor at term. J Soc Gynecol Investig. 2006;13:97–103.

    Article  CAS  PubMed  Google Scholar 

  25. Addad R., Tromp G., Kuivaniemi H, et al. Human spontaneous labor without histologic chorioamnionitis is characterized by an acute inflammation gene expression signature. Am J Obstet Gynecol. 2006;195:394–405.

    Article  Google Scholar 

  26. Beutler B. Inferences, questions and possibilities in toll-like receptor signaling. Nature. 2004;430:257–263.

    Article  CAS  PubMed  Google Scholar 

  27. Ozato K., Tsujimura H., Tamura T. Toll-like receptor signaling and regulation of cytokine gene expression in the immune system. Biotechniques. 2002;33:S66–S75.

    Article  Google Scholar 

  28. Sadowsky DW, Adams KM, Gravett MG, et al. Preterm labor is induced by intraamniotic infusions of interleukin-1β and tumor necrosis factor-α but not by interleukin-6 or interleukin-8 in a nonhuman primate model. Am J Obstet Gynecol. 2006;195:1578–1589.

    Article  CAS  PubMed  Google Scholar 

  29. Werner SL, Barken D., Hoffmann A. Stimulus specificity of gene expression programs determined by temporal control of IKK activity. Science. 2005;309:1857–1861.

    Article  CAS  PubMed  Google Scholar 

  30. Hoebe K., Janssen E., Beutler B. The interface between innate and adaptive immunity. Nat Immunol. 2004;5:971–974.

    Article  CAS  PubMed  Google Scholar 

  31. Krikun G., Lockwood CJ, Abrahams VM, et al. Expression of toll-like receptors in the human decidua. Histol Histopathol. 2007;22:847–854.

    CAS  PubMed  Google Scholar 

  32. Shim S-S., Romero R., Hong J-S, et al. Clinical significance of intra-amniotic inflammation in patients with preterm premature rupture of membranes. Am J Obstet Gynecol. 2004;191: 1339–1345.

    Article  PubMed  Google Scholar 

  33. Millar LK, Boesche M., Yamamoto SY, et al. A relaxin-mediated pathway to preterm premature rupture of the fetal membranes that is independent of infection. Am J Obstet Gynecol. 1998;179: 126–134.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gillian D. Bryant-Greenwood PhD.

Additional information

This work was supported by grants from NIH HD 24314, HD 06159, HD 18185, HD 01264, and HD 41676.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bryant-Greenwood, G.D., Kern, A., Yamamoto, S.Y. et al. Relaxin and the Human Fetal Membranes. Reprod. Sci. 14 (Suppl 8), 42–45 (2007). https://doi.org/10.1177/1933719107310821

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719107310821

Keywords

Navigation