Skip to main content

Advertisement

Log in

Processes Regulating Cervical Ripening Differ From Cervical Dilation and Postpartum Repair: Insights From Gene Expression Studies

  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

A greater understanding of the processes that regulate cervical remodeling during pregnancy, parturition, and the postpartum period is required to understand causes of preterm and posterm birth in which abnormal cervical function is the primary culprit. In the current study, gene expression patterns unique to cervical ripening as compared with cervical dilation and/or postpartum repair are identified in a mouse model. Genes differentially regulated from gestation day 15 to late day 18 reveal processes important for cervical ripening. Genes differentially regulated from late day 18 to 2 hours after birth reveal processes that could be important during cervical dilation or the postpartum recovery period. Based on expression patterns, cervical ripening requires a downregulation of collagen assembly genes; increased synthesis of glycosaminoglycans that disrupt the matrix, such as hyaluronan; increased metabolism of progesterone; and changes in epithelial barrier properties. The latter phases of dilation and postpartum recovery are associated with increased assembly of mature collagen, synthesis of matrix proteins that promote a dense connective tissue, activation of inflammatory responses, prostaglandin synthesis, and further changes in epithelial barrier properties and differentiation. Processes/gene expression required for cervical ripening are distinct from those important in latter phases of cervical remodeling and highlight the importance of timing of tissue collection for understanding the molecular mechanisms of cervical ripening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martin JA, Hamilton BE, Sutton PD, Ventura SJ, Menacker F, Kirmeyer S. Births: final data for 2004. Natl Vital Stat Rep. 2006;55(1):1–101.

    PubMed  Google Scholar 

  2. Word RA, Li XH, Hnat M, Carrick K. Dynamics of cervical remodeling during pregnancy and parturition: mechanisms and current concepts. Semin Reprod Med. 2007; 25(1):69–79.

    Article  CAS  PubMed  Google Scholar 

  3. Leppi TJ A study of the uterine cervix of the mouse. Anat Rec. 1964;150:51–65.

    Article  CAS  PubMed  Google Scholar 

  4. Read CP, Word RA, Ruscheinsky MA, Timmons BC, Mahendroo MS Cervical remodeling during pregnancy and parturition: molecular characterization of the softening phase in mice. Reproduction. 2007;134:327–340.

    Article  CAS  PubMed  Google Scholar 

  5. Leppert PC Anatomy and physiology of cervical ripening. Clin Obstet Gynecol. 1995;38:267–279.

    Article  CAS  PubMed  Google Scholar 

  6. Mahendroo MS, Porter A, Russell DW, Word RA The parturition defect in steroid 5a-reductase type 1 knockout mice is due to impaired cervical ripening. Mol Endocrinol. 1999;13(6): 981–992.

    CAS  PubMed  Google Scholar 

  7. Straach KJ, Shelton JM, Richardson JA, Hascall VC, Mahendroo MS Regulation of hyaluronan expression during cervical ripening. Glycobiology. 2005;15(1):55–65.

    Article  CAS  PubMed  Google Scholar 

  8. Timmons BC, Mahendroo MS Timing of neutrophil activation and expression of proinflammatory markers do not support a role for neutrophils in cervical ripening in the mouse. Biol Reprod. 2006;74(2):236–245.

    Article  CAS  PubMed  Google Scholar 

  9. Word RA, Landrum CP, Timmons BC, Young SG, Mahendroo MS Transgene insertion on mouse chromosome 6 impairs function of the uterine cervix and causes failure of parturition. Biol Reprod. 2005;73(5):1046–1056.

    Article  CAS  PubMed  Google Scholar 

  10. Liggins G. Ripening of the cervix. Semin Perinatol. 1978; 2(3):261–271.

    CAS  PubMed  Google Scholar 

  11. Mackler AM, Iezza G, Akin MR, McMillan P, Yellon SM Macrophage trafficking in the uterus and cervix precedes parturition in the mouse. Biol Reprod. 1999;61(4):879–883.

    Article  CAS  PubMed  Google Scholar 

  12. Sennstrom MB, Ekman G, Westergren-Thorsson G, et al. Human cervical ripening, an inflammatory process mediated by cytokines. Mol Human Reprod. 2000;6(4):375–381.

    Article  CAS  Google Scholar 

  13. Thomson AJ, Telfer JF, Young A, et al. Leukocytes infiltrate the myometrium during human parturition: further evidence that labour is an inflammatory process. Hum Reprod. 1999;14(1):229–236.

    Article  CAS  PubMed  Google Scholar 

  14. Sakamoto Y, Moran P, Searle RF, Bulmer JN, Robson SC Interleukin-8 is involved in cervical dilatation but not in prelabour cervical ripening. Clin Exp Immunol. 2004;138(1): 151–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sakamoto Y, Moran P, Bulmer JN, Searle RF, Robson SC Macrophages and not granulocytes are involved in cervical ripening. J Reprod Immunol. 2005;66(2):161–173.

    Article  CAS  PubMed  Google Scholar 

  16. Buhimschi IA, Dussably L, Buhimschi CS, Ahmed A, Weiner CP Physical and biomechanical characteristics of rat cervical ripening are not consistent with increased collagenase activity. Am J Obstet Gynecol. 2004;191(5):1695–1704.

    Article  CAS  PubMed  Google Scholar 

  17. Rimmer D. The effect of pregnancy on the collagen of the uterine cervix of the mouse. J Endocr. 1973;57:413–418.

    Article  CAS  PubMed  Google Scholar 

  18. Osman I, Young A, Ledingham MA, et al. Leukocyte density and pro-inflammatory cytokine expression in human fetal membranes, decidua, cervix and myometrium before and during labour at term. Mol Hum Reprod. 2003;9(1):41–45.

    Article  CAS  PubMed  Google Scholar 

  19. Mahendroo M, Cala K, Russell D. 5a-reduced androgens play a key role in murine parturition. Mol Endocrinol. 1996; 10: 380–392.

    CAS  PubMed  Google Scholar 

  20. Timmons BC, Mitchell SM, Gilpin C, Mahendroo MS Dynamic changes in the cervical epithelial tight junction complex and differentiation occur during cervical ripening and parturition. Endocrinology. 2007;148(3):1278–1287.

    Article  CAS  PubMed  Google Scholar 

  21. Drewes PG, Yanagisawa H, Starcher B, et al. Pelvic organ prolapse in fibulin-5 knockout mice: pregnancy-induced changes in elastic fiber homeostasis in mouse vagina. Am J Pathol. 2007;170(2):578–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ozasa H, Tominaga T, Nishimura T, Takeda T. Lysyl oxidase activity in the mouse uterine cervix is physiologically regulated by estrogen. Endocrinology. 1981;109(2):618–621.

    Article  CAS  PubMed  Google Scholar 

  23. van der Slot AJ, Zuurmond AM, Bardoel AF, et al. Identification of PLOD2 as telopeptide lysyl hydroxylase, an important enzyme in fibrosis. J Biol Chem. 2003;278(42): 40967–40972.

    Article  PubMed  CAS  Google Scholar 

  24. Ali S, Robertson H, Wain JH, Isaacs JD, Malik G, Kirby JA A non-glycosaminoglycan-binding variant of CC chemokine ligand 7 (monocyte chemoattractant protein-3) antagonizes chemokine-mediated inflammation. J Immunol. 2005;175(2): 1257–1266.

    Article  CAS  PubMed  Google Scholar 

  25. Havelock JC, Keller P, Muleba N, et al. Human myometrial gene expression before and during parturition. Biol Reprod. 2005;72(3):707–719.

    Article  CAS  PubMed  Google Scholar 

  26. Walz A, Burgener R, Car B, Baggiolini M, Kunkel SL, Strieter RM Structure and neutrophil-activating properties of a novel inflammatory peptide (ENA-78) with homology to interleukin 8. J Exp Med. 1991;174(6):1355–1362.

    Article  CAS  PubMed  Google Scholar 

  27. Hassan SS, Romero R, Haddad R, et al.The transcriptome of the uterine cervix before and after spontaneous term parturition. Am J Obstet Gynecol. 2006; 195(3):778–786.

    Article  CAS  PubMed  Google Scholar 

  28. Lin F, Fukuoka Y, Spicer A, et al. Tissue distribution of products of the mouse decay-accelerating factor (DAF) genes: exploitation of a Daf1 knock-out mouse and site-specific monoclonal antibodies. Immunology. 2001;104(2):215–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wiley SR, Cassiano L, Lofton T, et al. A novel TNF receptor family member binds TWEAK and is implicated in angiogenesis. Immunity. 2001;15(5):837–846.

    Article  CAS  PubMed  Google Scholar 

  30. Bornstein P, Agah A, Kyriakides TR The role of thrombospondins 1 and 2 in the regulation of cell-matrix interactions, collagen fibril formation, and the response to injury. Int J Biochem Cell Biol. 2004;36(6):1115–1125.

    Article  CAS  PubMed  Google Scholar 

  31. Ge G, Zhang Y, Steiglitz BM, Greenspan DS Mammalian tolloid-like 1 binds procollagen C-proteinase enhancer protein 1 and differs from bone morphogenetic protein 1 in the functional roles of homologous protein domains. J Biol Chem. 2006;281(16):10786–10798.

    Article  CAS  PubMed  Google Scholar 

  32. Jones PL, Jones FS Tenascin-C in development and disease: gene regulation and cell function. Matrix Biol. 2000;19(7): 581–596.

    Article  CAS  PubMed  Google Scholar 

  33. Meijboom LJ, Drenthen W, Pieper PG, et al. Obstetric complications in Marfan syndrome. Int J Cardiol. 2006;110(1):53–59.

    Article  PubMed  Google Scholar 

  34. Stracke JO, Hutton M, Stewart M, et al. Biochemical characterization of the catalytic domain of human matrix metalloproteinase 19: evidence for a role as a potent basement membrane degrading enzyme. J Biol Chem. 2000;275(20):14809–14816.

    Article  CAS  PubMed  Google Scholar 

  35. Chen HY, Yu SL, Chen CH, et al. A five-gene signature and clinical outcome in non-small-cell lung cancer. N Engl J Med. 2007;356(1):11–20.

    Article  CAS  PubMed  Google Scholar 

  36. LaFleur AM, Lukacs NW, Kunkel SL, Matsukawa A. Role of CC chemokine CCL6/C10 as a monocyte chemoattractant in a murine acute peritonitis. Mediators Inflamm. 2004;13(5–6): 349–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kokenyesi R, Armstrong LC, Agah A, Artal R, Bornstein P. Thrombospondin 2 deficiency in pregnant mice results in premature softening of the uterine cervix. Biol Reprod. 2004;70(2):385–390.

    Article  CAS  PubMed  Google Scholar 

  38. Wight T. Versican: a versatile extracellular matrix proteoglycan in cell biology. Curr Opin Cell Biol. 2002;14:617–623.

    Article  CAS  PubMed  Google Scholar 

  39. Russell DL, Doyle KM, Ochsner SA, Sandy JD, Richards JS Processing and localization of ADAMTS-1 and proteolytic cleavage of versican during cumulus matrix expansion and ovulation. J Biol Chem. 2003;278(43):42330–42339.

    Article  CAS  PubMed  Google Scholar 

  40. Kruithof EK, Baker MS, Bunn CL Biological and clinical aspects of plasminogen activator inhibitor type 2. Blood. 1995;86(11):4007–4024.

    Article  CAS  PubMed  Google Scholar 

  41. Yu H, Maurer F, Medcalf RL Plasminogen activator inhibitor type 2: a regulator of monocyte proliferation and differentiation. Blood. 2002;99(8):2810–2818.

    Article  CAS  PubMed  Google Scholar 

  42. Makino S, Zaragoza DB, Mitchell BF, Robertson S, Olson DM Prostaglandin F2alpha and its receptor as activators of human decidua. Semin Reprod Med. 2007;25(1):60–68.

    Article  CAS  PubMed  Google Scholar 

  43. Stracke JO, Fosang AJ, Last K, et al. Matrix metalloproteinases 19 and 20 cleave aggrecan and cartilage oligomeric matrix protein (COMP). FEBS Lett. 2000;478(1–2):52–56.

    Article  CAS  PubMed  Google Scholar 

  44. Kim DD, Song WC Membrane complement regulatory proteins. Clin Immunol. 2006;118(2–3):127–136.

    Article  CAS  PubMed  Google Scholar 

  45. Drzewiecki G, Tozzi C, Yu Y, Leppert PC A dual mechanism of biomechanical change in rat cervix in gestation and postpartum: applied vascular mechanics. Cardiovas Eng. 2007;5(4): 187–193.

    Article  Google Scholar 

  46. Kitamura K, Ito A, Mori Y, Hirakawa S. Changes in the human uterine cervical collagenase with special reference to cervical ripening. Biochem Med. 1979;22(3):332–338.

    Article  CAS  PubMed  Google Scholar 

  47. Osmers R, Rath W, Adelmann-Grill BC, Fittkow C, Severenyi M, Kuhn W. Collagenase activity in the cervix of non-pregnant and pregnant women. Arch Gynecol Obstet. 1990; 248:75–80.

    Article  CAS  PubMed  Google Scholar 

  48. Rajabi MR, Solomom S, Poole AR Biochemical evidence of collagenase-mediated collagenolysis as a mechanism of cervical dilatation at parturition in the guinea pig. Biol Reprod. 1991;45:764–772.

    Article  CAS  PubMed  Google Scholar 

  49. Sato T, Ito A, Mori Y, Yamashita K, Hayakawa T, Nagase H. Hormonal regulation of collagenolysis in uterine cervical fibroblasts: modulation of synthesis of procollagenase, prostromelysin and tissue inhibitor of metalloproteinases (TIMP) by progesterone and oestradiol-17 beta. Biochem J. 1991; 275(pt 3):645–650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Huber A, Hudelist G, Czerwenka K, Husslein P, Kubista E, Singer CF Gene expression profiling of cervical tissue during physiological cervical effacement. Obstet Gynecol. 2005; 105(1):91–98.

    Article  CAS  PubMed  Google Scholar 

  51. Osmers R, Rath W, Pflanz MA, Kuhn W, Stuhlsatz HW, Szeverenyi M. Glycosaminoglycans in cervical connective tissue during pregnancy and parturition. Obstet Gynecol. 1993; 81:88–92.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mala Mahendroo PhD.

Additional information

This work is supported by National Institutes of Health grant R01 HD043154 (to MM).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timmons, B.C., Mahendroo, M. Processes Regulating Cervical Ripening Differ From Cervical Dilation and Postpartum Repair: Insights From Gene Expression Studies. Reprod. Sci. 14 (Suppl 8), 53–62 (2007). https://doi.org/10.1177/1933719107309587

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719107309587

Keywords

Navigation