Skip to main content

Advertisement

Log in

Stem Cells in Human Reproduction

  • Review Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The derivation of human embryonic stem (hES) cells heralds a new era in stem cell research, generating excitement for their therapeutic potential in regenerative medicine. Pioneering work of embryologists, developmental biologists, and reproductive medicine practitioners in in vitro fertilization clinics has facilitated hES cell research. This review summarizes current research focused on optimizing hES cell culture conditions for good manufacturing practice, directing hES cell differentiation toward trophectoderm and germ cells, and approaches used to reprogram cells for pluripotent cell derivation. The identification of germ stem cells in the testis and the recent controversy over their existence in the ovary raise the possibility of harnessing them for treating young cancer survivors. There is also the potential to harvest fetal stem cells with pluripotent cell—like properties from discarded placental tissues. The recent identification of adult stem/progenitor cell activity in the human endometrium offers a new understanding of common gynecological diseases. Discoveries resulting from research into embryonic, germ, fetal, and adult stem cells are highly relevant to human reproduction

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lerou PH, Daley GQ. Therapeutic potential of embryonic stem cells. Blood Rev. 2005;19:321–331.

    Article  PubMed  Google Scholar 

  2. Pera MF, Trounson AO. Human embryonic stem cells: prospects for development. Development. 2004;131:5515–5525.

    Article  CAS  PubMed  Google Scholar 

  3. Trounson A. The production and directed differentiation of human embryonic stem cells. Endocrine Rev. 2006;27:208–219.

    Article  Google Scholar 

  4. Pera MF, Reubinoff B, Trounson A. Human embryonic stem cells. J Cell Sci. 2000;113:5–10.

    CAS  PubMed  Google Scholar 

  5. Odorico JS, Kaufman DS, Thomson JA. Multilineage differentiation from human embryonic stem cell lines. Stem Cells. 2001;19:193–204.

    Article  CAS  PubMed  Google Scholar 

  6. Bibikova M, Chudin E, Wu B, et al. Human embryonic stem cells have a unique epigenetic signature. Genome Res. 2006;16:1075–1083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–1147.

    Article  CAS  PubMed  Google Scholar 

  8. Shamblott MJ, Axelman J, Wang S, et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci U S A. 1998;95:13726–13731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Donovan PJ, Gearhart J. The end of the beginning for pluripotent stem cells. Nature. 2001;414:92–97.

    Article  CAS  PubMed  Google Scholar 

  10. Hoffman LM, Carpenter MK. Characterization and culture of human embryonic stem cells. Nat Biotechnol. 2005;23:699–708.

    Article  CAS  PubMed  Google Scholar 

  11. Veiga A, Camarasa MV, Aran A, Raya A, Belmonte Jci. Selection of embyros for stem cell derivation: can we optimize the process? In: Simón C, Pellicer A, eds. Stem Cells in Human Reproduction: Basic Science and Therapeutic Potential. Oxon, UK: Informa Healthcare; 2007:135–147.

    Google Scholar 

  12. Daley GQ, Ahrlund RL, Auerbach JM, et al. Ethics. The ISSCR guidelines for human embryonic stem cell research. Science. 2007;315:603–604.

    Article  CAS  PubMed  Google Scholar 

  13. Ethics Committee of the American Society for Reproductive Medicine. Donating spare embyros for embryonic stem-cell research. Fertil Steril. 2004;82(suppl 1):S224–S227.

    Google Scholar 

  14. ESHRE Taskforce on Ethics and Law. IV. Stem cells. Hum Reprod. 2002;17:1409–1410.

    Article  Google Scholar 

  15. Kim HS, Oh SK, Park YB, et al. Methods for derivation of human embryonic stem cells. Stem Cells. 2005;23:1228–1233.

    Article  PubMed  Google Scholar 

  16. Klimanskaya I, Chung Y, Becker S, Lu SJ, Lanza R. Human embryonic stem cell lines derived from single blastomeres. Nature. 2006;444:481–485.

    Article  CAS  PubMed  Google Scholar 

  17. Xu CH, Inokuma MS, Denham J, et al. Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol. 2001;19:971–974.

    Article  CAS  PubMed  Google Scholar 

  18. Klimanskaya I, Chung Y, Meisner L, et al. Human embryonic stem cells derived without feeder cells. Lancet. 2005;365: 1636–1641.

    Article  CAS  PubMed  Google Scholar 

  19. Martin MJ, Muotri A, Gage F, Varki A. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med. 2005;11:228–232.

    Article  CAS  PubMed  Google Scholar 

  20. Xu RH, Peck RM, Li DS, et al. Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat Methods. 2005;2:185–190.

    Article  CAS  PubMed  Google Scholar 

  21. Ludwig TE, Levenstein ME, Jones JM, et al. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol. 2006;24:185–187.

    Article  CAS  PubMed  Google Scholar 

  22. Hentze H, Graichen R, Colman A. Cell therapy and the safety of embryonic stem cell-derived grafts. Trends Biotechnol. 2007;25:24–32.

    Article  CAS  PubMed  Google Scholar 

  23. Singec I, Jandial R, Crain A, Nikkhah G, Snyder EY. The leading edge of stem cell therapeutics. Annu Rev Med. 2007;58: 313–328.

    Article  CAS  PubMed  Google Scholar 

  24. Kim JH, Auerbach JM, Rodriguez-Gomez JA, et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature. 2002;418:50–56.

    Article  CAS  PubMed  Google Scholar 

  25. Xu RH, Chen X, Li DS, et al. BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol. 2002;20:1261–1264.

    Article  CAS  PubMed  Google Scholar 

  26. Gerami-Naini B, Dovzhenko OV, Durning M, et al.Trophoblast differentiation in embryoid bodies derived from human embryonic stem cells. Endocrinology. 2004;145:1517–1524.

    Article  CAS  PubMed  Google Scholar 

  27. Harun R, Ruban L, Matin M, et al. Cytotrophoblast stem cell lines derived from human embryonic stem cells and their capacity to mimic invasive implantation events. Hum Reprod. 2006;21:1349–1358.

    Article  CAS  PubMed  Google Scholar 

  28. Nagano MC. In vitro gamete derivation from pluripotent stem cells: progress and perspective. Biol Reprod. 2007;76:546–551.

    Article  CAS  PubMed  Google Scholar 

  29. Hubner K, Fuhrmann G, Christenson LK, et al. Derivation of oocytes from mouse embryonic stem cells. Science. 2003;300: 1251–1256.

    Article  PubMed  CAS  Google Scholar 

  30. Lacham-Kaplan O, Chy H, Trounson A. Testicular cell conditioned medium supports differentiation of embryonic stem cells into ovarian structures containing oocytes. Stem Cells. 2006; 24:266–273.

    Article  PubMed  Google Scholar 

  31. Dyce PW, Wen LH, Li JL. In vitro germline potential of stem cells derived from fetal porcine skin. Nat Cell Biol. 2006;8: 384–389.

    Article  CAS  PubMed  Google Scholar 

  32. Chen HF, Kuo HC, Chien CL, et al. Derivation, characterization and differentiation of human embryonic stem cells: comparing serum-containing versus serum-free media and evidence of germ cell differentiation. Hum Reprod. 2007;22:567–577.

    Article  PubMed  Google Scholar 

  33. Toyooka Y, Tsunekawa N, Akasu R, Noce T. Embryonic stem cells can form germ cells in vitro. Proc Natl Acad Sci U S A. 2003;100:11457–11462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Geijsen N, Horoschak M, Kim K, et al. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature. 2004;427:148–154.

    Article  CAS  PubMed  Google Scholar 

  35. Nayernia K, Nolte J, Michelmann HW, et al. In vitro-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice. Dev Cell. 2006;11:125–132.

    Article  CAS  PubMed  Google Scholar 

  36. Clark AT, Bodnar MS, Fox M, et al. Spontaneous differentiation of germ cells from human embryonic stem cells in vitro. Hum Mol Genet. 2004;13:727–739.

    Article  CAS  PubMed  Google Scholar 

  37. Hochedlinger K, Jaenisch R. Nuclear reprogramming and pluripotency. Nature. 2006;441:1061–1067.

    Article  CAS  PubMed  Google Scholar 

  38. Cibelli JB, Cunniff K, Vrana KE. Embryonic stem cells from parthenotes. Methods Enzymol. 2006;418:117–135.

    Article  CAS  PubMed  Google Scholar 

  39. Cibelli JB, Grant KA, Chapman KB, et al. Parthenogenetic stem cells in nonhuman primates. Science. 2002;295:819.

    Article  CAS  PubMed  Google Scholar 

  40. Cowan CA, Atienza J, Melton DA, Eggan K. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science. 2005;309:1369–1373.

    Article  CAS  PubMed  Google Scholar 

  41. Taranger CK, Noer A, Sorensen AL, et al. Induction of dedifferentiation, genomewide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Mol Biol Cell. 2005;16:5719–5735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–676.

    Article  CAS  PubMed  Google Scholar 

  43. Telfer EE, Gosden RG, Byskov AG, et al. On regenerating the ovary and generating controversy. Cell. 2005;122:821–822.

    Article  CAS  PubMed  Google Scholar 

  44. Zuckerman S. The number of oocytes in the mature ovary. Recent Prog Horm Res. 1950;6:63–109.

    Google Scholar 

  45. Kayisli UA, Seli E. Stem cells and fertility: what does the future hold? Curr Opin Obstet Gynecol. 2006;18:338–343.

    Article  PubMed  Google Scholar 

  46. Greenfeld C, Flaws JA. Renewed debate over postnatal oogenesis in the mammalian ovary. BioEssays. 2004;26:829–832.

    Article  CAS  PubMed  Google Scholar 

  47. Byskov AG, Faddy MJ, Lemmen JG, Andersen CY. Eggs forever? Differentiation. 2005;73:438–446.

    Article  CAS  PubMed  Google Scholar 

  48. Johnson J, Canning J, Kaneko T, Pru JK, Tilly JL. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature. 2004;428:145–150.

    Article  CAS  PubMed  Google Scholar 

  49. Johnson J, Bagley J, Skaznik-Wikiel M, et al. Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell. 2005;122:303–315.

    Article  CAS  PubMed  Google Scholar 

  50. Gosden RG. Germline stem cells in the postnatal ovary: is the ovary more like a testis? Hum Reprod Update. 2004;10: 193–195.

    Article  PubMed  Google Scholar 

  51. Liu Y, Wu C, Lyu Q, et al. Germline stem cells and neo-oogenesis in the adult human ovary. Dev Biol. 2007;306: 112–120.

    Article  CAS  PubMed  Google Scholar 

  52. Veitia RA, Gluckman E, Fellous M, Soulier J. Recovery of female fertility after chemotherapy, irradiation, and bone marrow allograft: further evidence against massive oocyte regeneration by bone marrow-derived germline stem cells. Stem Cells. 2007;25:1334–1335.

    Article  PubMed  Google Scholar 

  53. Kerr JB, Duckett R, Myers M, et al. Quantification of healthy follicles in the neonatal and adult mouse ovary: evidence for maintenance of primordial follicle supply. Reproduction. 2006;132:95–109.

    Article  CAS  PubMed  Google Scholar 

  54. Sottile V. Bone marrow as a source of stem cells and germ cells? Perspectives for transplantation. Cell Tissue Res. 2007;328:1–5.

    Article  PubMed  Google Scholar 

  55. Eggan K, Jurga S, Gosden R, Min IM, Wagers AJ. Ovulated oocytes in adult mice derive from non-circulating germ cells. Nature. 2006;441:1109–1114.

    Article  CAS  PubMed  Google Scholar 

  56. Bukovsky A, Caudle MR, Svetlikova M, Upadhyaya NB. Origin of germ cells and formation of new primary follicles in adult human ovaries. Reprod Biol Endocrinol. 2004;2:20.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bukovsky A, Svetlikova M, Caudle MR. Oogenesis in cultures derived from adult human ovaries. Reprod Biol Endocrinol. 2005;3:17.

    Google Scholar 

  58. Hutt KJ, Albertini DF. Clinical applications and limitations of current ovarian stem cell research: a review. J Exp Clin Assist Reprod. 2006;3:6.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Oktay K. Spontaneous conceptions and live birth after heterotopic ovarian transplantation: is there a germline stem cell connection? Hum Reprod. 2006;21:1345–1348.

    Article  PubMed  Google Scholar 

  60. Kubota H, Brinster RL. Technology insight: in vitro culture of spermatogonial stem cells and their potential therapeutic uses. Nat Clin Pract Endocrinol Metab. 2006;2:99–108.

    CAS  Google Scholar 

  61. Ehmcke J, Wistuba J, Schlatt S. Spermatogonial stem cells: questions, models and perspectives. Hum Reprod Update. 2006;12:275–282.

    Article  CAS  PubMed  Google Scholar 

  62. Brinster RL. Male germline stem cells: from mice to men. Science. 2007;316:404–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li L, Xie T. Stem cell niche: structure and function. Annu Rev Cell Dev Biol. 2005;21:605–631.

    Article  CAS  PubMed  Google Scholar 

  64. Ogawa T, Dobrinski I, Avarbock MR, Brinster RL. Transplantation of male germ line stem cells restores fertility in infertile mice. Nat Med. 2000;6:29–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kanatsu-Shinohara M, Miki H, Inoue K, et al. Germline niche transplantation restores fertility in infertile mice. Hum Reprod. 2005;20:2376–2382.

    Article  CAS  PubMed  Google Scholar 

  66. Kubota H, Avarbock MR, Brinster RL. Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proc Natl Acad Sci U S A. 2003;100:6487–6492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Brinster RL, Zimmermann JW. Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci U S A. 1994; 91:11298–11302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nagano M, Patrizio P, Brinster RL. Long-term survival of human spermatogonial stem cells in mouse testes. Fertil Steril. 2002;78:1225–1233.

    Article  PubMed  Google Scholar 

  69. Tournaye H, Goossens E, Verheyen G, et al. Preserving the reproductive potential of men and boys with cancer: current concepts and future prospects. Hum Reprod Update. 2004;10:525–532.

    Article  PubMed  Google Scholar 

  70. Geens M, Van de Velde H, De Block G, Goossens E, Van Steirteghem A, Tournaye H. The efficiency of magnetic-activated cell sorting and fluorescence-activated cell sorting in the decontamination of testicular cell suspensions in cancer patients. Hum Reprod. 2007;22:733–742.

    Article  CAS  PubMed  Google Scholar 

  71. Guillot PV, O’Donoghue K, Kurata H, Fisk NM. Fetal stem cells: betwixt and between. Semin Reprod Med. 2006;24:340–347.

    Article  CAS  PubMed  Google Scholar 

  72. Campagnoli C, Roberts Iag, Kumar S, et al. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood. 2001;98: 2396–2402.

    Article  CAS  PubMed  Google Scholar 

  73. Le Blanc K, Gotherstrom C, Ringden O, et al. Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation. 2005;79:1607–1614.

    Article  PubMed  Google Scholar 

  74. Fauza D. Amniotic fluid and placental stem cells. Best Pract Res Clin Obstet Gynaecol. 2004;18:877–891.

    Article  PubMed  Google Scholar 

  75. Yen BL, Huang HI, Chien CC, et al. Isolation of multipotent cells from human term placenta. Stem Cells. 2005;23:3–9.

    Article  CAS  PubMed  Google Scholar 

  76. Portmann-Lanz CB, Schoeberlein A, Huber A, et al. Placental mesenchymal stem cells as potential autologous graft for pre-and perinatal neuroregeneration. Am J Obstet Gynecol. 2006;194:664–673.

    Article  CAS  PubMed  Google Scholar 

  77. Miki T, Strom SC. Amnion-derived pluripotent/multipotent stem cells. Stem Cell Rev. 2006;2:133–142.

    Article  CAS  PubMed  Google Scholar 

  78. Miki T, Lehmann T, Cai H, Stolz DB, Strom SC. Stem cell characteristics of amniotic epithelial cells. Stem Cells. 2005;23: 1549–1559.

    Article  CAS  PubMed  Google Scholar 

  79. Ilancheran S, Michalska A, Peh G, et al. Stem cells derived from human fetal membranes display multi-lineage differentiation potential. Biol Reprod. Epub ahead of print May 9, 2007.

    Google Scholar 

  80. Miki T, Mitamura K, Ross MA, Stolz DB, Strom SC. Identification of stem cell marker-positive cells by immunofluorescence in term human amnion. J Reprod Immunol. Epub ahead of print May 8, 2007.

    Google Scholar 

  81. Sakuragawa N, Yoshikawa H, Sasaki M. Amniotic tissue transplantation: clinical and biochemical evaluations for some lysosomal storage diseases. Brain Dev. 1992;14:7–11.

    Article  CAS  PubMed  Google Scholar 

  82. DeCoppi P, Bartsch G. Jr, Siddiqui MM, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol. 2007;25:100–106.

    Article  CAS  Google Scholar 

  83. Tsai MS, Hwang SM, Tsai YL, et al. Clonal amniotic fluid-derived stem cells express characteristics of both mesenchymal and neural stem cells. Biol Reprod. 2006;74:545–551.

    Article  CAS  PubMed  Google Scholar 

  84. In’t Anker PS, Scherjon SA, Kleijburg-van der KC, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood. 2003;102:1548–1549.

    Article  Google Scholar 

  85. Bilic G, Hall H, Bittermann AG, et al. Human preterm amnion cells cultured in 3-dimensional collagen I and fibrin matrices for tissue engineering purposes. Am J Obstet Gynecol. 2005;193:1724–1732.

    Article  CAS  PubMed  Google Scholar 

  86. Gluckman E, Broxmeyer HA, Auerbach AD, et al. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA identical sibling. N Engl J Med. 1989;321:1174–1178.

    Article  CAS  PubMed  Google Scholar 

  87. Rogers I, Casper RF. Umbilical cord blood stem cells. Best Pract Res Clin Obstet Gynaecol. 2004;18:893–908.

    Article  PubMed  Google Scholar 

  88. Kurtzberg J, Lyerly AD, Sugarman J. Untying the Gordian knot: policies, practices, and ethical issues related to banking of umbilical cord blood. J Clin Invest. 2005;115:2592–2597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Brunstein CG, Wagner JE. Umbilical cord blood transplantation and banking. Annu Rev Med. 2006;57:403–417.

    Article  CAS  PubMed  Google Scholar 

  90. Weiss ML, Troyer DL. Stem cells in the umbilical cord. Stem Cell Rev. 2006;2:155–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol. 2000; 109:235–242.

    Article  CAS  PubMed  Google Scholar 

  92. Lee OK, Kuo TK, Chen WM, et al. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood. 2004;103:1669–1675.

    Article  CAS  PubMed  Google Scholar 

  93. Jeong JA, Gang EJ, Hong SH, et al. Rapid neural differentiation of human cord blood-derived mesenchymal stem cells. Neuroreport. 2004;15:1731–1734.

    Article  CAS  PubMed  Google Scholar 

  94. Kogler G, Sensken S, Airey JA, et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med. 2004;200:123–135.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Schmidt D, Mol A, Neuenschwander S, et al. Living patches engineered from human umbilical cord derived fibroblasts and endothelial progenitor cells. Eur J Cardiothorac Surg. 2005;27:795–800.

    Article  PubMed  Google Scholar 

  96. Bianchi DW, Fisk NM. Fetomaternal cell trafficking and the stem cell debate: gender matters. JAMA. 2007;297:1489–1491.

    Article  CAS  PubMed  Google Scholar 

  97. Khosrotehrani K, Bianchi DW. Multi-lineage potential of fetal cells in maternal tissue: a legacy in reverse. J Cell Sci. 2005; 118:1559–1563.

    Article  CAS  PubMed  Google Scholar 

  98. Guetta E, Gordon D, Simchen MJ, Goldman B, Barkai G. Hematopoietic progenitor cells as targets for non-invasive prenatal diagnosis: detection of fetal CD34+ cells and assessment of post-delivery persistence in the maternal circulation. Blood Cells Mol Dis. 2003;30:13–21.

    Article  CAS  PubMed  Google Scholar 

  99. Bianchi DW, Zickwolf GK, Weil GJ, Sylvester S, DeMaria MA. Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci U S A. 1996;93:705–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Evans PC, Lambert N, Maloney S, et al. Long-term fetal microchimerism in peripheral blood mononuclear cell subsets in healthy women and women with scleroderma. Blood. 1999;93:2033–2037.

    Article  CAS  PubMed  Google Scholar 

  101. Gargett CE. Uterine stem cells: what is the evidence? Hum Reprod Update. 2007;13:87–101.

    Article  CAS  PubMed  Google Scholar 

  102. Padykula HA, Coles LG, Okulicz WC, et al. The basalis of the primate endometrium: a bifunctional germinal compartment. Biol Reprod. 1989;40:681–690.

    Article  CAS  PubMed  Google Scholar 

  103. Gargett CE, Chan Rws, Schwab KE. Endometrial stem cells. Curr Opin Obstet Gynecol. 2007;19:377–383.

    Article  PubMed  Google Scholar 

  104. Chan Rws, Schwab KE, Gargett CE. Clonogenicity of human endometrial epithelial and stromal cells. Biol Reprod. 2004;70:1738–1750.

    Article  CAS  PubMed  Google Scholar 

  105. Schwab KE, Chan RW, Gargett CE. Putative stem cell activity of human endometrial epithelial and stromal cells during the menstrual cycle. Fertil Steril. 2005;84(suppl 2): 1124–1130.

    Article  CAS  PubMed  Google Scholar 

  106. Gargett CE, Zillwood R, Schwab KE. Characterising the stem cell activity of human endometrial cells. Hum Reprod. 2005;20(suppl 1):i95.

    Google Scholar 

  107. Schwab KE, Gargett CE. Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Hum Reprod. 2007 (in press).

    Google Scholar 

  108. Smalley MJ, Clarke RB. The mammary gland “side population”: a putative stem/progenitor cell marker? J Mammary Gland Biol Neoplasia. 2005;10:37–47.

    Article  PubMed  Google Scholar 

  109. Kato K, Yoshimoto M, Kato K, et al. Characterization of side-population cells in human normal endometrium. Hum Reprod. 2007;22:1214–1223.

    Article  CAS  PubMed  Google Scholar 

  110. Kurita T, Medina R, Schabel AB, et al. The activation function-1 domain of estrogen receptor alpha in uterine stromal cells is required for mouse but not human uterine epithelial response to estrogen. Differentiation. 2005; 73: 313–322.

    Article  CAS  PubMed  Google Scholar 

  111. Masuda H, Maruyama T, Hiratsu E, et al. Noninvasive and real-time assessment of reconstructed functional human endometrium in NOD/SCID/gcnull immunodeficient mice. Proc Natl Acad Sci U S A. 2007;104:1925–1930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kim JY, Tavare S, Shibata D. Counting human somatic cell replications: methylation mirrors endometrial stem cell divisions. Proc Natl Acad Sci U S A. 2005;102:17739–17744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Matthai C, Horvat R, Noe M, et al. Oct-4 expression in human endometrium. Mol Hum Reprod. 2006;12:7–10.

    Article  CAS  PubMed  Google Scholar 

  114. Lynch L, Golden-Mason L, Eogan M, O’Herlihy C, O’Farrelly C. Cells with haematopoietic stem cell phenotype in adult human endometrium: relevance to infertility? Hum Reprod. 2007;22:919–926.

    Article  CAS  PubMed  Google Scholar 

  115. Taylor HS. Endometrial cells derived from donor stem cells in bone marrow transplant recipients. JAMA. 2004;292: 81–85.

    Article  CAS  PubMed  Google Scholar 

  116. Du H, Taylor HS. Contribution of bone marrow derived stem cells to endometrium and endometriosis. Stem Cells. Epub ahead of print April 26, 2007.

    Google Scholar 

  117. Tanaka M, Kyo S, Kanaya T, et al. Evidence of the monoclonal composition of human endometrial epithelial glands and mosaic pattern of clonal distribution in luminal epithelium. Am J Pathol. 2003;163:295–301.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Chan RW, Gargett CE. Identification of label-retaining cells in mouse endometrium. Stem Cells. 2006;24:1529–1538.

    Article  CAS  PubMed  Google Scholar 

  119. Cervello I, Martinez-Conejero JA, Horcajadas JA, Pellicer A, Simon C. Identification, characterization and co-localization of label-retaining cell population in mouse endometrium with typical undifferentiated markers. Hum Reprod. 2007; 22:45–51.

    Article  CAS  PubMed  Google Scholar 

  120. Gargett CE, Chan RW. Endometrial stem/progenitor cells and proliferative disorders of the endometrium. Minerva Ginecol. 2006;58:511–526.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline E. Gargett PhD.

Additional information

Caroline E. Gargett is supported by a National Health and Medical Research Council RD Wright Career Development Award (ID 465121) and the CASS Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gargett, C.E. Stem Cells in Human Reproduction. Reprod. Sci. 14, 405–424 (2007). https://doi.org/10.1177/1933719107306231

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719107306231

Key words

Navigation