Skip to main content

Advertisement

Log in

Fetal Programming of Cardiac Function and Disease

  • Review Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Fetal programming describes long-term adaptive changes that an organism undergoes in response to an intrauterine insult. This term was coined to describe the increased incidence of adult disease, such as cardiovascular disease, seen among populations that suffered an intrauterine insult. While changes induced by such an insult may be initially beneficial, they can have deleterious long-term effects. Cardiac programming effects can be induced by maternal diet alterations, fetal exposure to increased levels of corticosteroids, chronic fetal hypoxia and anemia, and maternal use of nicotine or cocaine. These stimuli result in a variety of changes in cardiac function and gene expression, many of which persist into adulthood. A possible mediator of these changes is an alteration in the DNA methylation pattern of the cardiomyocytes. This review gives an overview of the changes that have been observed in the heart in response to various programming stimuli and potential programming mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barker D. The fetal origins of coronary heart disease. Eur Heart J. 1997; 18: 883–884.

    Article  CAS  PubMed  Google Scholar 

  2. Barker D, Osmond C, Golding J, Kuh D, Wadsworth M. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. Br Med J. 1989; 298: 564–567.

    Article  CAS  Google Scholar 

  3. Barker D. In utero programming of cardiovascular disease. Theriogenology. 2000;53: 555–574.

    Article  CAS  PubMed  Google Scholar 

  4. Forsen T, Eriksson J, Tuomilehto J, Osmond C, Barker D. Growth in utero and during childhood among women who develop coronary heart disease: longitudinal study. Br Med J. 1998;319: 1403–1407.

    Article  Google Scholar 

  5. Leon D, Lithell H, Vagero D, Koupilova I, Mohsen R. Reduced fetal growth rate and increased risk of death from ischemic heart disease: cohort study of 15 000 Swedish men and women born 1915–29. Br Med J. 1998; 317: 241–245.

    Article  CAS  Google Scholar 

  6. Battista M-C, Oligny L, St-Louis J, Brochu M. Intrauterine growth restriction in rats is associated with hypertension and renal dysfunction in adulthood. Am J Physiol Endocrinol Metab. 2002;283: 124–131.

    Article  Google Scholar 

  7. Stein C, Fall C, Kumaran K, Osmond C, Cox V, Barker D. Fetal growth and coronary heart disease in south India. Lancet. 1996;348: 1269–1273.

    Article  CAS  PubMed  Google Scholar 

  8. Eriksson J, Forsen T, Tuomilehto J, Winter P, Osmond C, Barker D. Catch-up growth in childhood and death from coronary heart disease: longitudinal study. Br Med J. 1999; 318: 427–431.

    Article  CAS  Google Scholar 

  9. Godfrey K, Barker D. Fetal nutrition and adult disease. Nature. 2000;71: 1344–1352.

    Google Scholar 

  10. Wu G, Bazer F, Cudd T, Meininger C, Spencer T. Maternal nutrition and fetal development. J Nutr. 2004; 134: 2169–2172.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang L. Prenatal hypoxia and cardiac programming. J Soc Gynecol Investig. 2005;12: 2–13.

    Article  PubMed  Google Scholar 

  12. Davis L, Thornburg K, Giraud G. The effects of anemia as a programming agent in the fetal heart. J Physiol. 2005;565: 35–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Seckl J. Prenatal glucocorticoids and long-term programming. Eur J Endocrinol. 2004;151: U49–U62.

    Article  CAS  PubMed  Google Scholar 

  14. Slotkin T. Fetal nicotine or cocaine exposure: which one is worse? J Pharmacol Exp Ther. 1998;285: 931–945.

    CAS  PubMed  Google Scholar 

  15. Corstius H, Zimanyi M, Maka N, et al. Effect of intrauterine growth restriction on the number of cardiomyocytes in rat hearts. Pediatr Res. 2005;57: 796–800.

    Article  CAS  PubMed  Google Scholar 

  16. Cheema K, Dent M, Saini H, Aroutiounova N, Tappia P. Prenatal exposure to maternal undernutrition induces adult cardiac dysfunction. Br J Nutr. 2005;93: 471–477.

    Article  CAS  PubMed  Google Scholar 

  17. Gill C, Mestri R, Samali A. Losing heart: the role of apoptosis in heart disease—a novel therapeutic target? FASEB J. 2002; 16: 135–146.

    Article  CAS  PubMed  Google Scholar 

  18. James T. Normal and abnormal consequences of apoptosis in the human heart. Annu Rev Physiol. 1998;60: 309–325.

    Article  CAS  PubMed  Google Scholar 

  19. Haunstetter A, Izumo S. Apoptosis: basic mechanisms and implications for cardiovascular disease. Circ Res. 1998;82: 1111–1129.

    Article  CAS  PubMed  Google Scholar 

  20. Lim K, Monika Z, Black M. Effect of maternal protein restriction in rats on cardiac fibrosis and capillarization in adulthood. Pediatr Res. 2006;60: 83–87.

    Article  PubMed  Google Scholar 

  21. Fernadez-Twinn D, Ekizoglou S, Wayman A, Petry C, Ozanne S. Maternal low-protein diet programs cardiac β-adrenergic response and signaling in 3-mo-old male offspring. Am J Physiol Regul Integr Comp Physiol. 2006;291: 429–436.

    Article  CAS  Google Scholar 

  22. Petry C, Dorling M, Wang C, Pawlak D, Ozanne S. Catecholamine levels and receptor expression in low protein rat offspring. Diabet Med. 2002;17: 848–853.

    Article  Google Scholar 

  23. Port J, Bristow M. Altered beta-adrenergic receptor gene regulation and signaling in chronic heart failure. J Mol Cell Cardiol. 2001;33: 887–905.

    Article  CAS  PubMed  Google Scholar 

  24. Han H-C, Austin K, Nathanielsz P, Ford S, Niland M, Hansen T. Maternal nutrient restriction alters gene expression in the ovine fetal heart. J Physiol. 2004;558: 111–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Battista M-C, Calvo E, Chorvatova A, Comte B, Corbeil J, Brochu M. Intra-uterine growth restriction and the programming of left ventricular remodelling in female rats. J Physiol. 2005;565: 197–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tappia P, Nijjar M, Mahay A, Aroutiounova N, Dhalla N. Phospholipid profile of developing heart of rats exposed to low-protein diet in pregenancy. Am J Physiol Regul Integr Comp Physiol. 2005;289: 1400–1406.

    Article  CAS  Google Scholar 

  27. Hua X, Levya A, Harta E, Nolana L, Daltonb G, Levi A. Intrauterine growth retardation results in increased cardiac arrhythmias and raised diastolic blood pressure in adult rats. Cardiovasc Res. 2002;48: 233–243.

    Article  Google Scholar 

  28. Xu Y, Williams S, O’Brien D, Davidge S. Hypoxia or nutrient restriction during pregnancy in rats leads to progressive cardiac remodeling and impairs postischemic recovery in adult male offspring. FASEB J. 2006;8: 1251–1253.

    Article  CAS  Google Scholar 

  29. Bertram C, Trowern A, Copin N, Jackson A, Whorwood C. The maternal diet durning pregnancy programs altered expression of the glucocorticoid receptor and type 2 11βhydroxysteroid dehydrogenase: potential molecular mechanism underlying the porgramming of hypertension in utero. Endocrinology. 2001;142: 2841–2853.

    Article  CAS  PubMed  Google Scholar 

  30. Ballard P. Glucocorticoid regulation of lung maturation. Mead Johnson Symp Perinat Dev Med. 1987;30: 22–27.

    CAS  Google Scholar 

  31. Liggins G, Howie R. A controlled trial of antepartum glucocorticoid treatment for prevenetion of the respiratory distress syndrome in premature infants. Pediatrics. 1972;50: 515.

    CAS  PubMed  Google Scholar 

  32. Report on the Consensus Development Conference on the Effect of Corticosteroids for Fetal Maturation on Perinatal Outcomes.NIH Pub No. 95-3784. Washington, DC: US Department of Health and Human Services, Public Health Service; 1994.

  33. Committee on Obstetric Practice. ACOG committee opinion: antenatal corticosteroid therapy for fetal maturation. Obstet Gynecol. 2002;99: 871–873.

    Article  Google Scholar 

  34. Reini S, Wood C, Jensen E, Keller-Wood M. Increased maternal cortisol in late-gestation ewes decreases fetal cardiac expression of 11beta-HSD2 mRNA and the ratio of AT1 to AT2 receptor mRNA. Am J Physiol Regulat Integrat Comp Physiol. 2006;291: 1708–1716.

    Google Scholar 

  35. Lombes M, Alfaidy N, Eugene E, Lessana A, Farman N, Bonvalet J. Prerequisite for cardiac aldosterone action: mineralocorticoid receptor and 11 beta-hydroxysteroid dehydrogenase in the human heart. Circulation. 1995;92: 175–182.

    Article  CAS  PubMed  Google Scholar 

  36. Beitins I, Bayard F, Ances I, Kowarski A, Migeon C. The metabolic clearance rate, blood production, interconversion and transplacental passage of cortisol and cortisone in pregnancy near term. Pediatr Res. 1973;7: 509–519.

    Article  CAS  PubMed  Google Scholar 

  37. Klemcke H. Placental metabolism of cortisol at mid- and late gestation in swine. Biol Reprod. 1995;53: 1293–1301.

    Article  CAS  PubMed  Google Scholar 

  38. Bernal A, Flint A, Anderson A, Turnbull A. 11-hydroxysteroid dehydrogenase (E.C. 1.1.1.146) activity in human placenta and decidua. J Steroid Biochem. 1980;13: 1081–1087.

    Article  CAS  PubMed  Google Scholar 

  39. Bernal A, Craft I. Corticosteroid metabolism in vitro by human placenta, foetal membranes and decidua in early and late gestation. Placenta. 1981;2: 279–285.

    Article  Google Scholar 

  40. Dodic M, Hantzis V, Duncan J, et al. Programming effects of short prenatal exposure to cortisol. FASEB J. 2002; 16: 1017–1026.

    Article  CAS  PubMed  Google Scholar 

  41. Moss T, Sloboda D, Gurrin L, Harding R, Challis J, Newnham J. Programming effects in sheep of prenatal growth restriction and glucocorticoid exposure. Am J Physiol Regul Integr Comp Physiol. 2001;281: 960–970.

    Article  Google Scholar 

  42. Nyirenda M, Linday R, Kenyon C, Burchell A, Seckl J. Glucocorticoid exposure in late gestation permanently programs rat hepatic phosphoenolpyuvate carboxykinase and glucocorticoid receptor expression and causes glucose intolerance in adult offspring. J Clin Invest. 1998;101: 2174–2181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Taegtmeyer H. Energy metabolism of the heart: from basic concepts to clinical applications. Curr Probl Cardiol. 1994;19: 59–113.

    Article  CAS  PubMed  Google Scholar 

  44. Langdown M, Holness M, Sugden M. Early growth retardation induced by excessive exposure to glucocorticoids in utero selectively increases cardiac GLUT 1 protein expression and Akt/protein kinase B activity in adulthood. J Endocrinol. 2001; 169: 11–22.

    Article  CAS  PubMed  Google Scholar 

  45. Langdown M, Holness M, Sudgen M. Effects of prenatal glucocorticoid exposure on cardiac calreticulin and calsequestrin protein expression during early development and in adulthood. Biochem J. 2003; 371: 61–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mesaeli N, Nakamura K, Zvaritch E, et al. Calreticulin is essential for cardiac development. J Cell Biol. 1998;144: 857–868.

    Article  Google Scholar 

  47. Nakamura K, Robertson M, Liu G, et al. Complete heart block and sudden death in mice overexpressing calreticulin. J Clin Invest. 2001;107: 1245–1253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kageyama K, Ihara Y, Goto S, et al. Overexpression of calreticulin modulates protein kinase B/Akt signaling to promote apoptosis during cardiac differentiation of cardiomyoblast H9c2 cells. J Biol Chem. 2002;277: 19255–19264.

    Article  CAS  PubMed  Google Scholar 

  49. Mery L, Mesaeli N, Michalak M, Opas M, Lew D, Krause K. Overexpression of calreticulin increases intracellular Ca2+ storage and decreases store-operated Ca2+ influx. J Biol Chem. 1996;271: 9332–9339.

    Article  CAS  PubMed  Google Scholar 

  50. Fahmi A, Forhead A, Vandenberg J. Cortisol influences the otogeny of both α- and β-subunits of the caiac sodium channel in fetal sheep. J Endocrinol. 2004;180: 449–455.

    Article  CAS  PubMed  Google Scholar 

  51. Giraud G, Louey S, Jonker S, Schultz J, Thornburg K. Cortisol stimulates cell cycle activity in the cardiomyocyte of the sheep fetus. Endocrinology. 2006;147: 3643–3649.

    Article  CAS  PubMed  Google Scholar 

  52. Schenker S, Yang Y, Johnson R, Downing J. The transfer of cocaine and its metabolites across the term human placenta. Clin Pharmacol Ther. 1993;53: 329–339.

    Article  CAS  PubMed  Google Scholar 

  53. Xiao Y, He J, Gilbert R, Zhang L. Cocaine induces apoptosis in fetal myocardial cells through a mitochondria-dependent pathway. J Pharmacol Exp Ther. 1999;292: 8–14.

    Google Scholar 

  54. Bae S, Zhang L. Prenatal cocaine exposure increases apoptosis of neonatal rat heart and heart susceptibility to ischemia/ reperfusion injury in one-month-old rat. Br J Pharmacol. 2005; 144: 900–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bae S, Gilbert R, Ducsay C, Zhang L. Prenatal cocaine exposure increases heart susceptibility to ischemia/reperfusion injury in adult male but not female rats. J Physiol. 2005;565: 149–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang H, Darwanto A, Linkhart T, Sowers LC, Zhang L. Maternal cocaine administration causes an epigenetic modification of PKCε gene expression in fetal rat heart. Mol Pharmacol. Epub ahead of print January 3, 2007.

  57. Chen L, Hahndagger H, Wudagger G, et al. Opposing cardio-protective actions and parallel hypertrophic effects of delta PKC and epsilon PKC. Proc Natl Acad Sci USA. 2001;1073: 11114–11119.

    Article  Google Scholar 

  58. Lamber D, Clark K. The maternal and fetal physiologic effects of nicotine. Semin Perinatol. 1996;2: 115–126.

    Article  Google Scholar 

  59. Navarro H, Mills E, Seidler F, et al. Prenatal nicotine exposure impairs β-adrenergic function: persistent chronotropic sub-sensitivity despite recovery from deficits in receptor binding. Brain Res Bull. 1990;25: 233–237.

    Article  CAS  PubMed  Google Scholar 

  60. Slotkin T, Saleh J, McCook E, Seidler F. Impaired cardiac function during postnatal hypoxia in rats exposed to nicotine prenatally: implications for perinatal morbidity and mortality, and for sudden infant death syndrome. Teratology. 1997;55: 177–184.

    Article  CAS  PubMed  Google Scholar 

  61. Wakschlag L, Pickett K, Cook E, Benowitz N, Leventhal B. Maternal smoking during pregnancy and severe antisocial behavior in offspring: a review. Am J Public Health. 2002;92: 966–974.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ernst M, Moolchan E, Robinson M. Behavioral and neural consequences of prenatal exposure to nicotine. J Am Acad Child Adolesc Psychiatry. 2001;40: 630.

    Article  CAS  PubMed  Google Scholar 

  63. Longo L. The biological effects of carbon monoxide on the pregnant woman, fetus, and newborn infant. Am J Obstet Gynecol. 1977;129: 69–103.

    Article  CAS  PubMed  Google Scholar 

  64. Woods J, Plessinger M, Clark K. Effects of cocaine on uterine blood flow and fetal oxygenation. JAMA. 1987;257: 957–961.

    Article  CAS  PubMed  Google Scholar 

  65. Bae S, Xiao Y, Li G, Casiano C, Zhang L. Effect of maternal chronic hypoxic exposure during gestation on apoptosis in fetal rat heart. Am J Physiol Heart Circ Physiol. 2003;285: H983–H990.

    Article  CAS  PubMed  Google Scholar 

  66. Li G, Xiao Y, Estrella J, Ducsay C, Gilbert R, Zhang L. Effect of fetal hypoxia on heart susceptibility to ischemia and reperfusion injury in the adult rat. J Soc Gynecol Investig. 2003;10: 265–274.

    Article  CAS  PubMed  Google Scholar 

  67. Li G, Bae S, Zhang L. Effect of prenatal hypoxia on heat stress-mediated cardioprotection in adult rat heart. Am J Physiol Heart Circ Physiol. 2004;286: H1712–H1719.

    Article  CAS  PubMed  Google Scholar 

  68. Copel J, Grannum P, Green J, et al. Fetal cardiac output in the isoimmunized pregnancy: a pulsed Doppler-echocardiographic study of patients undergoing intravascular intrauterine transfusion. Am J Obstet Gynecol. 1989;161: 361–365.

    Article  CAS  PubMed  Google Scholar 

  69. Davis L, Hohimer A, Morton M. Myocardial blood flow and coronary reserve in chronically anemic fetal lambs. Am J Physiol. 1999;277: R306–R313.

    CAS  PubMed  Google Scholar 

  70. Broberg C, Giraud G, Schultz J, Thornburg K, Hohimer A, Davis L. Fetal anemia leads to augmented contractile response to hypoxic stress in adulthood. Am J Physiol Regul Integr Comp Physiol. 2003;285: R649–R655.

    Article  Google Scholar 

  71. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature. 2003;33: 245–254.

    CAS  Google Scholar 

  72. Fuks F. DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev. 2005;15: 490–495.

    Article  CAS  PubMed  Google Scholar 

  73. Morgan H, Santos F, Green K, Dean W, Reik W. Epigenetic reprogramming in mammals. Hum Mol Genet. 2005;14: 47–58.

    Article  CAS  Google Scholar 

  74. Lua Q, Qiua X, Hua N, Wena H, Sua Y, Richardson B. Epigenetics, disease, and therapeutic interventions. Ageing Res Rev. 2006;5: 449–467.

    Article  CAS  Google Scholar 

  75. Waterland R, Jirtle R. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol. 2003;23: 5293–5300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wolffa G, Kodellb R, Mooree S, Cooney C. Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J. 1998; 11: 949–957.

    Article  Google Scholar 

  77. Hescheler J, Meyer R, Plant S, Krautwurst D, Rosenthal W, Schultz G. Morphological, biochemical, and electrophysiological characterization of a clonal cell (H9c2) line from rat heart. Circ Res. 1991;69: 1476–1486.

    Article  CAS  PubMed  Google Scholar 

  78. Turner N, Xia F, Azhar G, Zhang X, Liu L, Wei J. Oxidative stress induces DNA fragmentation and caspase activation via the c-Jun NH2-terminal kinase pathway in H9c2 cardiac muscle cells. J Mol Cell Cardiol. 1998;30: 1789–1801.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Meyer BS.

Additional information

Studies from the authors’ laboratory presented in this article are supported in part by the National Institutes of Health grants HL67745, HD31226, HL82779, and HL83966 and by Loma Linda University School of Medicine. We apologize to all authors whose work could not be cited because of space limitations.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, K., Zhang, L. Fetal Programming of Cardiac Function and Disease. Reprod. Sci. 14, 209–216 (2007). https://doi.org/10.1177/1933719107302324

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719107302324

Key words

Navigation