Skip to main content

Advertisement

Log in

Overexpression of Macrophage Colony-Stimulating Factor (CSF-1) and Its Receptor, c-fms, in Normal Ovarian Granulosa Cells Leads to Cell Proliferation and Tumorigenesis

  • Original Articles
  • Published:
The Journal of the Society for Gynecologic Investigation: JSGI Aims and scope Submit manuscript

Abstract

Objective

TO investigate the interdependent role of macrophage colony-stimulating factor (CSF-1) and its receptor (c-fms) on their induction and their role in granulosa cell tumorigenesis.

Methods

Normal ovarian granulosa cells were used to develop stable transfectants that overexpress CSF-1 or CSF-1/c-fms. CSF-1 was expressed under the control of tissue/cell specific α-inhibin promoter, and c-fms was expressed constitutively using a viral promoter. Stable transfectants were used to examine the effect of overexpression of these molecules on the proliferation, induction of autocrine loop, and tumorigenesis.

Results

Expression vectors were developed for CSF-1 and its receptor, c-fms, and used to generate stable transfects overexpressing these genes in granulosa cells. Data show that overexpression of CSF-1 leads to the induction of its receptor. Stable transfectants that overexpress CSF-1 show about a 2.5-fold increase in cell proliferation compared with normal granulosa cells, and these cells are also converted to anchorage-independent and tumorigenic phenotype. Using an antisense RNA approach, we also demonstrated that the increased cell proliferation is CSF-1 specific. Concomitant overexpression of CSF-1 and c-fms further results in increased cell proliferation (sixfold), rapid anchorage-independent growth, and aggressive tumor formation.

Conclusion

CSF-1 is capable of inducing its own receptor, and, similarly, the CSF-1 receptor, c-fms, can also induce its growth factor ligand. These studies also demonstrate the interdependent role of these genes in transformation of normal ovarian granulosa cells to a tumorigenic phenotype and suggest the possibility of a similar role for these genes in progression of ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kacinski BM, Carter D, Mittal K, et al. High level expression of fins proto-oncogene mRNA is observed in clinically aggressive human endometrial adenocarcinomas. Int J Radiat Oncol Biol Phys 1988;15:823–9.

    Article  CAS  Google Scholar 

  2. Kacinski BM, Carter D, Mittal K, et al. Ovarian adenocarcinomas express fms complementary transcripts and fms antigen, often with coexpression of CSF-1. Am J Pathol 1990;137:135–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ramaknshnan S, Xu FJ, Brandt SJ, Neidel JE, Bast RC, Brown EL. Constitutive production of macrophage colony-stimulating factor by human ovarian and breast cancer cell lines. J Clin Invest 1989;83:921–6.

    Article  Google Scholar 

  4. Filderman AE, Bruckner A, Kacinski BM, Deng N, Remold HG. Macrophage colony-stimulating factor (CSF-1) enhances invasiveness in CSF-1 receptor-positive carcinoma cell lines. Cancer Res 1992;52:3661–6.

    CAS  PubMed  Google Scholar 

  5. Kacinski BM, Carter D, Kohorn EI, et al. Oncogene expression in vivo by ovarian adenocarcinomas and mixed-müllerian tumors. Yale J Biol Med 1989;62:379–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kacinski BM, Chambers SK, Carter D, Filderman AE, Stanley ER. The macrophage colony stimulating factor CSF-1, an auto-and paracrine tumor cytokine is also a circulating “tumor marker” in patients with ovarian, endometrial and pulmonary neoplasms. In: Dinarello CA, Kluger MJ, Powanda MC, Oppenheim JJ. eds. The physiological and pathological effects of cytokines. New York: Wiley-Liss, 1990:393–400.

    Google Scholar 

  7. Scholl SM, Pallud C, Reuvon F, et al. Anti-colony stimulating factor-1 antibody staining in primary breast adenocarcinomas correlates with marked inflammatory cell infiltrates and prognosis. J Natl Cancer Inst 1994;86:120–6.

    Article  CAS  Google Scholar 

  8. Tang R, Beuron F, Ojeda M, Mosseri V, Pouillart P, Schodd S. M-CSF and M-CSF-receptor expression by breast tumor cells: M-CSF mediated recruitment of tumor infiltrating monocytes. J Cell Biochem 1992;50:350–1.

    Article  CAS  Google Scholar 

  9. Chambers SK, Wang Y, Gertz RE, Kacinski BM. Macrophage colony-stimulating factor mediates invasion of ovarian cancer cells through urokinase. Cancer Res 1995;55:1578–85.

    CAS  PubMed  Google Scholar 

  10. Roussel MF, Dull TJ, Rettenmier CW, Ralph P, Ullrich A, Sherr CJ. Transforming potential of the c-fms proto-oncogene (CSF-1 receptor). Nature 1987;325:549–52.

    Article  CAS  Google Scholar 

  11. Sherr CJ. The fms oncogene. Biochem Biophys Acta 1988;948: 225–43.

    CAS  PubMed  Google Scholar 

  12. Wheeler EF, Rettenmier CW, Look AT, Sherr CJ. The v-fms oncogene induces factor independence tumorigenicity in CSF-1 dependent macrophage cell line. Nature 1986;324:377–80.

    Article  CAS  Google Scholar 

  13. Wheeler EF, Askew D, May S, Ihle JN, Sheer CJ. The v-fms oncogene induces factor-independent growth and transformation of the interleukin-3-dependent myeloid cell line FDC-P1. Mol Cell Biol 1987;7:1673–80.

    Article  CAS  Google Scholar 

  14. Rettenmeier CW, Roussel MF, Ashumun RA, Ralph P, Price K, Sherr CJ. Synthesis of membrane-bound colony-stimulating factor (CSF-1) and down modulation of CSF-1 receptors in NIH 3T3 cells transformed by cotransfection of the human CSF-1 and c-fms (CSF-1 receptor) genes. Mol Cell Biol 1987;7:2378–87.

    Article  Google Scholar 

  15. Taylor GR, Reedijk M, Rothwell V, Rohrschneider L, Pawson T. The unique insert of cellular and viral fms protein tyrosine kinase domains is dispensable for enzymatic and transforming activities. EMBO J 1989;8:2029–37.

    Article  CAS  Google Scholar 

  16. Rohrschneider LR, Bourette RP, Lioubin MN, Algate PA, Myles GM, Carlberg K. Growth and differentiation of signals regulated by the M-CSF receptor. Mol Reprod Dev 1997;46: 96–103.

    Article  CAS  Google Scholar 

  17. Suzuki M, Sekiguchi I, Ohwada M, et al. Expression of c-fms proto-oncogene product by ovarian cancer cell lines with effects of macrophage colony-stimulating factor on proliferation. Oncology 1996;53:99–103.

    Article  CAS  Google Scholar 

  18. Krupitza G, Fritsche R, Dittrich E, et al. Macrophage colony-stimulating factor is expressed by an ovarian carcinoma subline and stimulates the c-myc proto-oncogene. Br J Cancer 1995;72: 35–40.

    Article  CAS  Google Scholar 

  19. Favot P, Yue X, Hume DA. Regulation of the c-fms promoter in murine tumor cell lines. Oncogene 1985;11:1371–81.

    Google Scholar 

  20. Bruckner A, Filderman AE, Kircheimer JC, Bindr BR, Renold, HG. Endogenous receptor-bound urokinase mediates tissue invasion of the human lung carcinoma cell lines A549 and Calu-1. Cancer Res 1992;52:3043–7.

    CAS  PubMed  Google Scholar 

  21. Katabuchi H, Fukumatsu Y, Araki M, et al. Role of macrophages in ovarian follicular development. Horm Res 1996;46:45–51.

    Article  CAS  Google Scholar 

  22. Lee F, Mulligan R, Ringold G. Glucocorticoids regulate expression of dihydrofolate reductase cDNA in mouse mammary tumor virus chimeric plasmids. Nature (London) 1981;294:228–32.

    Article  CAS  Google Scholar 

  23. Tekmal RR, Bums WN, Rao DV, et al. Regulation of rat granulosa cell α-inhibin expression by luteinizing hormone, estradiol, and progesterone. Am J Obstet Gynecol 1996;175: 420–7.

    Article  CAS  Google Scholar 

  24. Feng ZM, Li YP, Chen CL. Analysis of the 5′-flanking regions of rat inhibin α- and β-subunit genes suggests two different regulatory mechanisms. Mol Endocrinol 1989;3:1914–25.

    Article  CAS  Google Scholar 

  25. Ladner MB. Martin GA, Noble JA, et al. cDNA cloning and expression of murine macrophage colony-stimulating factor from L929 cells. Proc Natl Acad Sci USA 1988;85:6706–10.

    Article  CAS  Google Scholar 

  26. Rothwell VM, Rohrschneider LR. Murine c-fms cDNA: cloning, sequence analysis and retroviral expression. Oncogene Res 1987;1:311–24.

    CAS  PubMed  Google Scholar 

  27. Rohrschneider LR, Metcalf D. Induction of macrophage colony stimulating factor-dependent growth and differentiation after induction of the murine c-fms gene into FDC-P1 cells. Mol Cell Biol 1989;9:5081–92.

    Article  CAS  Google Scholar 

  28. Stein S, Stoica G, Tilley R, Burghard RC. Rat ovarian granulosa cell culture: a model system for the study of cell-cell communication during multi step transformation. Cancer Res 1991;51: 696–706.

    CAS  PubMed  Google Scholar 

  29. Macpherson I, Montagnier L. Agar suspension culture for the selective assay of cells transformed by polyoma virus. Virology 1964;23:291–4.

    Article  CAS  Google Scholar 

  30. Rohrschneider LR, Rothwell VM, Nicola NA. Transformation of murine fibroblasts by a retrovirus encoding the murine c-fms proto-oncogene. Oncogene 1989;4:1015–22.

    CAS  PubMed  Google Scholar 

  31. Morgan C, Pollard JW, Stanley ER. Isolation and characterization of a cloned growth factor dependent macrophage cell line, BAC1.2F5. J Cell Physiol 1987;130:420–7.

    Article  CAS  Google Scholar 

  32. Kacmski BM, Scata KA, Carter D, et al. FMS (CSF-1 receptor) and CSF-1 transcripts and protein are expressed by human breast carcinomas in vivo and in vitro. Oncogene 1991;6:941–52.

    Google Scholar 

  33. Roberts WM, Shapiro LH, Ashmun RA, Look TA. Transcription of the human colony-stimulating factor-1 receptor gene is regulated by separate tissue-specific promoters. Blood 1992;79: 586–93.

    Article  CAS  Google Scholar 

  34. Sapi E, Flick MB, Rodov S, et al. Independent regulation of invasion and anchorage-independent growth by different auto-phosphorylation sites of the macrophage colony-stimulating factor 1 receptor. Cancer Res 1996;56:5704–12.

    CAS  PubMed  Google Scholar 

  35. Borycki AG, Foucrier J, Saffer L, Leibovitch SA. Repression of the CSF-1 receptor (c-fms proto-oncogene product) by antisense transfection induces Gl growth arrest in L6al rat myoblasts. Oncogene 1995;10:1799–1811.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeshwar Rao Tekmal PhD.

Additional information

The authors thank Dr. George Stoica for providing SIGC cell line, Dr. Dirk Dillehay for histopathologic evaluation, and Dr. Neil Sidell for critical evaluation of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keshava, N., Gubba, S. & Tekmal, R.R. Overexpression of Macrophage Colony-Stimulating Factor (CSF-1) and Its Receptor, c-fms, in Normal Ovarian Granulosa Cells Leads to Cell Proliferation and Tumorigenesis. Reprod. Sci. 6, 41–49 (1999). https://doi.org/10.1177/107155769900600109

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/107155769900600109

Key words

Navigation