Skip to main content

Advertisement

Log in

Preeclampsia: The Endothelium, Circulating Factor(s) and Vascular Endothelial Growth Factor

  • Review Article
  • Published:
The Journal of the Society for Gynecologic Investigation: JSGI Aims and scope Submit manuscript

Abstract

It has been proposed that endothelial cell activation is the primary event in the multisystem disorder of preeclampsia. Evidence for endothelial involvement in this condition abounds. The best-characterized morphologic abnormality of this syndrome, glomerular endotheliosis, involves endothelial cells. Also associated with preeclampsia is a loss of endothelial cell integrity, with the consequent increase in vascular permeability, and an increase in the circulating levels of the endothelial cell markers, fibronectin, von Willebrand factor, tissue plasminogen activator, and plasminogen activator inhibitor-1. It is now well documented that endothelial activation contributes to the coagulation abnormalities observed in this disease. There is much evidence that the endothelial alterations in preeclampsia result from one or more circulating factors. The incubation of cultured endothelial cells with serum or plasma samples, taken from normal pregnant women and women with preeclampsia, results in marked alterations in cell behavior and metabolic processes. More recently, experiments employing myographic techniques have demonstrated convincingly the effects of a circulating factor (s) on the function of endothelial cells of resistance arteries. Vascular endothelial growth factor (VEGF) possesses many of the characteristics required of a candidate circulating factor. It contains a hydrophobic secretory signal sequence, exerts in vitro effects specific to vascular endothelial cell, and promotes endothelial expression of procoagulant activity. Circulating VEGF concentrations are elevated in women with preeclampsia, and VEGF increases microvascular endothelial cell prostacyclin production in a dose-dependent manner, analogous to the acute effects of plasma from patients with preeclampsia. Similarly, in myographic studies, when myometrial resistance arteries are incubated with VEGF, there are dose-dependent alterations in endothelium-dependent behavior, mirroring those found after incubation with plasma from patients with preeclampsia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferris TF. Pregnancy, preeclampsia, and the endothelial cell. N Engl J Med 1991;325:1439–42.

    Article  CAS  PubMed  Google Scholar 

  2. Roberts JM, Taylor RN, Musci TJ, Rodgers GM, Hubel CA, McLaughlin MK. Preeclampsia: an endothelial cell disorder. Am J Obstet Gynecol 1989;161:1200–4.

    Article  CAS  PubMed  Google Scholar 

  3. Spargo B, McCartney CP, Wmemiller R. Glomcrular capillary endotheliosis in toxemia of pregnancy. Arch Pathol 1959;68: 593–9.

    CAS  PubMed  Google Scholar 

  4. Campbell DM, Campbell AJ. Evans blue disappearance rate in normal and preeclamptic pregnancy. Clin Exp Hypertens 1983; 2:163–9.

    CAS  Google Scholar 

  5. Friedman SA, Taylor RN, Roberts JM. Pathophysiology of preeclampsia. Clin Perinatol 1991;18:661–82.

    Article  CAS  PubMed  Google Scholar 

  6. Taylor RN, Varma M, Teng NNH, Roberts JM. Women with preeclampsia have higher plasma endothelin levels than women with normal pregnancies. J Clin Endocrinol Metab 1990;71: 1675–7.

    Article  CAS  PubMed  Google Scholar 

  7. Mastrogiannis DS, O’Brien WF, Krammer J, Benoit R. Potential role of endothelins in normal and hypertensive pregnancies. Am J Obstet Gynecol 1991;165:1711–6.

    Article  CAS  PubMed  Google Scholar 

  8. MacCumber MW, Ross CA, Glaser BM, Snyder SH. Endothelin: visualization of mRNAs by in situ hybridization provides evidence for local action. Proc Nat Acad Sci USA 1989;86: 7285–9.

    Article  Google Scholar 

  9. Yoshimoto S, Ishizaki Y, Kurihara H, et al. Cerebral microvessel endothelium is producing endothelin. Brain Res 1990;508: 283–5.

    Article  CAS  PubMed  Google Scholar 

  10. Roberts JM, Redman CWG. Preeclampsia: more than pregnancy induced hypertension. Lancet 1993;341:1447–51.

    Article  CAS  PubMed  Google Scholar 

  11. Davies JA, Prentice CRM. Coagulation changes in pregnancy induced hypertension and growth retardation. In: Greer IA, Turpie AGG, Forbes CD, eds. Haemostasis and thrombosis in obstetrics and gynaecology. London: Chapman and Hall, 1992; 143–62.

    Google Scholar 

  12. Baker PN. The prediction of preeclampsia. Curr Obstet Gynaecol 1993;3:69–74.

    Article  Google Scholar 

  13. Grant NF, Daley GL, Chand S, Whalley PJ, McDonald PC. A study of angiotensin II pressor response throughout primigravid pregnancy. J Clin Invest 1973;52:2682–9.

    Article  Google Scholar 

  14. McCarthy AL, Woolfson RG, Raju SK, Poston L. Abnormal endothelial cell function of resistance arteries in women with preeclampsia. Am J Obstet Gynecol 1993;168:1323–30.

    Article  Google Scholar 

  15. Knock GA, Poston L. Bradykinin-mediated relaxation of isolated maternal resistance arteries in normal and preeclampsia. Am J Obstet Gynecol 1996;175:1668–74.

    Article  CAS  PubMed  Google Scholar 

  16. Ashworth JR, Warren AY, Baker PN, Johnson IR. Loss of endothelium-dependent relaxation in myometrial resistance arteries in preeclampsia. Br J Obstet Gynaecol 1997;104:1152–8.

    Article  CAS  PubMed  Google Scholar 

  17. Furchgott RF, Zawadski JV. The obligatory role of endothelial cells in the relaxation of smooth muscle by acetylcholine. Nature 1980;288:373–6.

    Article  CAS  PubMed  Google Scholar 

  18. Palmer RMJ, Ferrige AG, Maconda S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987;327:524–6.

    Article  CAS  PubMed  Google Scholar 

  19. Ignarro LJ, Buga GM, Woods KS, Byrns RE, Chaudhari G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 1987; 84:9265–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kuriyama H, Suzuki H. The effects of acetylcholine on the membrane and contractile properties of smooth muscle cells of the rabbit superior mesenteric artery. Br J Pharmacol 1978;64: 493–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bolton TB, Lang RJ, Takewaki T. Mechanism of action of noradrenaline and carbachol on smooth muscle guinea-pig anterior mesenteric artery. J Physiol 1984;351:549–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nakashima M, Mombouli JV, Taylor A, Vanhoutte PM. Endothelium-dependent hyperpolarization caused by bradykinin in human coronary arteries. J Clin Invest 1993;23:747–56.

    Google Scholar 

  23. Randall MD, Alexander SPH, Bennett TE, et al. An endogenous cannabinoid as an endothelium-derived vasorelaxant. Biochem Biophys Res Commun 1996;229:114–20.

    Article  CAS  PubMed  Google Scholar 

  24. Ashworth JR, Baker PN, Warren AY, Johnson IR. The mechanisms of endothelium-dependent relaxation in myometrial resistance vessels and their alterations in preeclampsia. Hvpertens Pregnancy 1998; in press.

  25. Page EW. The relation between hydatidiform moles, relative ischaenna of the gravid uterus, and placental origin of preeclampsia. Am J Obst Gynecol 1939;37:291–3.

    Article  Google Scholar 

  26. Rodgers GM, Taylor RN, Roberts JM. Preeclampsia is associated with a serum factor cytotoxic to human endothelial cells. Am J Obstet Gynecol 1988;159:908–14.

    Article  CAS  PubMed  Google Scholar 

  27. Tsukimori K, Maeda H, Shingu M, Koyanagi T, Nobunaga M, Nakano H. The possible role of endothelial cells in hypertensive disorders during pregnancy. Obstet Gynecol 1992;80:229–33.

    CAS  PubMed  Google Scholar 

  28. Lorentzen B, Endersen T, Hovig E, et al. Sera from preeclamptic women increases the content of triglycerides and reduces the release of prostacyclin in cultured endothelial cells. Thromb Res 1991;63:363–72.

    Article  CAS  PubMed  Google Scholar 

  29. Baker PN, Davige ST, Roberts JM. Plasma from women with preeclampsia increases endothelial cell nitric oxide production. Hypertension 1995;26:244–8.

    Article  CAS  PubMed  Google Scholar 

  30. de Groot CJ, Davidge ST, Friedman SA, McLaughlin MK, Roberts JM, Taylor RN. Plasma from preeclamptic women increases human endothelial cell prostacyclin production without changes in cellular enzyme activity or mass. Am J Obstet Gynecol 1995;172:976–85.

    Article  PubMed  Google Scholar 

  31. Hayman R, Sattar N, Warren AY, Greer I, Johnson I, Baker PN. A relationship between myometrial resistance artery behavior and circulating lipid composition. Am J Obstet Gynecol 1998; in press.

  32. Ashworth JR, Warren AY, Johnson IR, Baker PN. Plasma from preeclamptic women and functional change in myometrial resistance arteries. Br J Obstet Gynaecol 1998;4:459–61.

    Article  Google Scholar 

  33. Roberts JM, Taylor RN, Goldfien A. Clinical and biochemical evidence of endothelial dysfunction in the pregnancy syndrome preeclampsia. Am J Hypertens 1991;4:700–8.

    Article  CAS  PubMed  Google Scholar 

  34. Roberts JM, Edep ME, Goldfein A, Taylor RN. Sera from preeclamptic women specifically activate human umbilical vein endothelial cells in vitro. Am J Reprod Immunol 1992;27:101–8.

    Article  CAS  PubMed  Google Scholar 

  35. Taylor RN, Musci TJ, Rodgers GM, Roberts JM. Preeclamptic sera stimulate increased platelet-derived growth factor mRNA and protein expression by cultured human endothelial cells. Am J Reprod Immunol 1991;25:105–8.

    Article  CAS  PubMed  Google Scholar 

  36. Haller H, Hempel A, Homuth V, et al. Endothelial-cell permeability and protein kinase C in preeclampsia. Lancet 1998;351: 945–9.

    Article  CAS  PubMed  Google Scholar 

  37. Myatt L. Ecosanoids and blood pressure regulation. In: Sharp F, Symonds EM, eds. Hypertension in pregnancy: proceedings of the 16th Study Group of the RCOG. New York: Perinatology Press, 1987.

    Google Scholar 

  38. Brown MA, Tibben E, Zammit VC, Cario GM, Carlton MA. Nitric oxide excretion in normal and hypertensive pregnancies. Hypertens Pregnancy 1995;14:319–26.

    Article  CAS  Google Scholar 

  39. Wellings RP, Brockelsby JC, Baker PN. Activation of endothelial cells by plasma from women with preeclampsia: differential effects of four endothelial cell types. J Soc Gynecol Invest 1998; 5:31–7.

    Article  CAS  Google Scholar 

  40. Baker PN, Davidge ST, Barankiewicz J, Roberts JM. Plasma of preeclamptic women initially stimulates then inhibits endothelial prostacyclin production. Hypertension 1996;27:56–61.

    Article  CAS  PubMed  Google Scholar 

  41. Davidge ST, Baker PN, McLaughlin MM, Roberts JM. Nitric-oxide produced by endothelial cells increases production of eicosanoids through activation of prostaglandin H synthase. Circ Res 1995;77:274–83.

    Article  CAS  PubMed  Google Scholar 

  42. Fox PL, DiCorleto PE. Regulation of production of a platelet derived growth factor-like protein by cultured bovine aortic endothelial cells. J Cell Physiol 1984;121:298–308.

    Article  CAS  PubMed  Google Scholar 

  43. Sattar N, Bendomir A, Berry C, Shepherd J, Greer IA, Packard CJ. Lipoprotein subtractions in preeclampsia: pathogenic parallels to atherosclerosis. Obstet Gynecol 1997;89:403–8.

    Article  CAS  PubMed  Google Scholar 

  44. Hayman R, Brockelsby J, Warren A, Ashworth J, Johnson I, Baker P. Evidence for a circulating factor in preeclampsia. A role for vascular endothelial growth factor? Br J Obstet Gynaecol 1998;105:39–40.

    Google Scholar 

  45. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983;219: 983–5.

    Article  CAS  PubMed  Google Scholar 

  46. Miles AA, Miles EM. Vascular reactions to histamine, histamine liberator and leukotaxine in the skin of guinea-pigs. J Physiol 1952;118:228–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Connolly DT, Heuvelman DM, Nelson R, et al. Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. J Clin Invest 1989;84:1470–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ferrara N, Houck K, Jakeman L, Leung DW. Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocr Rev 1992;13:18–32.

    Article  CAS  PubMed  Google Scholar 

  49. Keck PJ, Hauser SD, Krivi G, et al. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 1989;246: 1309–12.

    Article  CAS  PubMed  Google Scholar 

  50. Terman BI, Dougher-Vermazen M, Carrion ME, et al. Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem Biophys Res Commun 1992;187:1579–86.

    Article  CAS  PubMed  Google Scholar 

  51. Vaisman N, Gospodarowicz D, Neufeld G. Characterization of the receptors for vascular endothelial growth factor. J Biol Chem 1990;19461–6.

    Google Scholar 

  52. Murohara T, Horowitz JR, Silver M, et al. Vascular endothelial growth factor/vascular permeability factor enhances vascular permeability via nitric oxide and prostacyclin. Circulation 1998;97: 97–107.

    Article  Google Scholar 

  53. Baker PN, Krasnow J, Roberts JM, Yeo KT. Elevated serum levels of vascular endothelial growth factor in patients with preeclampsia. Obstet Gynecol 1995;86:815–21.

    Article  CAS  PubMed  Google Scholar 

  54. Sharkey AM, Cooper JC, Balmforth JR, et al. Maternal plasma levels of vascular endothelial growth factor in normotensive pregnancies and in pregnancies complicated by preeclampsia. Eur J Clin Invest 1996;26:1182–5.

    Article  CAS  PubMed  Google Scholar 

  55. Brockelsby JC, Anthony F, Johnson IRJ, Wheeler T, Baker PN. Increased serum vascular endothelial growth factor concentrations in pre-eclampsia. Hypertens Pregnancy 1998;17: 283–90.

    Article  CAS  Google Scholar 

  56. Wheeler T, Brockelsby J, Wellings RP, Anthony F, Evans P, Baker PN. Serum levels of vascular endothelial growth factor are raised in preeclamptic versus normotensive pregnant women. J Soc Clin Invest 1997;4:194A.

    Google Scholar 

  57. Lyall F, Greer IA, Boswell F, Fleming R. Suppression of serum vascular endothelial growth factor immunoreactivity in normal pregnancy and in preeclampsia. Br J Obstet Gynaecol 1997;104: 223–8.

    Article  CAS  PubMed  Google Scholar 

  58. Anthony FW, Evans PW, Wheeler T, Wood PJ. Variation in detection of VEGF in maternal serum by immunoassay and the possible influence of binding proteins. Ann Clin Biochem 1997; 34:276–80.

    Article  CAS  PubMed  Google Scholar 

  59. Banks RE, Forbes MA, Searles J, et al. Evidence for the existence of a novel pregnancy-associated soluble variant of the vascular endothelial growth factor receptor, Flt-1. Mol Hum Reprod 1998;4:377–86.

    Article  CAS  PubMed  Google Scholar 

  60. Jackson MR, Carney EW, Lye SJ, Knox Ritchie JW. Localisation of two angiogenic growth factors (PDECGF and VEGF) in human placentae throughout gestation. Placenta 1994;15:341– 53.

    Article  CAS  PubMed  Google Scholar 

  61. Taylor CM, Stevens H, Anthony FW, Wheeler T. Influence of hypoxia on vascular endothelial growth factor and chorionic gonadotrophin production in the trophoblast-derived cell lines: JEG, JAr and BeWo. Placenta 1997;18:451–8.

    Article  CAS  PubMed  Google Scholar 

  62. Redman CWG, Beilin LJ, Bonnar J. Renal function in preeclampsia. J Clin Pathol 1976;10:91–4.

    Article  CAS  Google Scholar 

  63. Tsurumi Y, Murohara T, Kramski K. et al. Reciprocal relation between VEGF and NO in the regulation of endothelial integrity. Nature Med 1997;3:879–86.

    Article  CAS  PubMed  Google Scholar 

  64. Wu HM, Huang Q, Yuan Y, Granger HJ. VEGF induces NO-dependent hyperpermeability in coronary venules. Am J Physiol 1996;271:H2735–9.

    Article  CAS  PubMed  Google Scholar 

  65. Ni Y, May V, Braas K, Osol G. Pregnancy augments uteroplacental vascular endothelial growth factor gene expression and vasodilator effects. Am J Physiol 1997;273:H938–44.

    CAS  PubMed  Google Scholar 

  66. Ahmed A, Dunk C, Kniss D, Wilkes M. Role of VEGF receptor-1 (Flt-1) in mediating calcium-dependent nitric oxide release and limiting DNA synthesis in human trophoblast cells. Lab Invest 1997;76:779–91.

    CAS  PubMed  Google Scholar 

  67. Brockelsby JC, Wellings RP, Baker PN. Vascular Endothelial growth factor (VEGF) alters endothelial cell function. J Clin Sci 1997;93:8.

    Google Scholar 

  68. Davidge ST, Signorella AP, Hubel CA, Lykins DL, Roberts JM. Distinct factors in plasma of preeclamptic women increase endothelial nitric oxide or prostacyclin. Hypertension 1996;28:758–64.

    Article  CAS  PubMed  Google Scholar 

  69. Brockelsby J, Hayman R, Warren A, Johnson I, Baker P. Preeclampsia: a role for vascular endothelial growth factor. J Soc Gynecol Invest 1998;5:67A.

    Google Scholar 

  70. Grant JM. Confusion with Doppler, certainty with salt, and more basic science needed in preeclampsia. Br J Obstet Gynaecol 1998;105:v.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Baker DM.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayman, R., Brockelsby, J., Kenny, L. et al. Preeclampsia: The Endothelium, Circulating Factor(s) and Vascular Endothelial Growth Factor. Reprod. Sci. 6, 3–10 (1999). https://doi.org/10.1177/107155769900600103

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/107155769900600103

Key words

Navigation