Skip to main content

Advertisement

Log in

Intracellular Signaling and Phasic Myometrial Contractions

  • Review Article
  • Published:
The Journal of the Society for Gynecologic Investigation: JSGI Aims and scope Submit manuscript

Abstract

This article reviews recently reported observations regarding the intracellular signal transduction mechanisms involved in the generation of phasic contractions occurring in myometrial tissue. The presence of cell surface receptors for classic uterotonic agonists (including oxytocin, norepinephrine, vasopressin, acetylcholine, and prostaglandins [PGs]) has been well described; all are seven-membrane-spanning, G protein-coupled receptors. Occupancy of these receptors, coupled through members of the Gq and/or Gi families of heterotrimetric G proteins, results in stimulation of the phospholipase C-ß (PCL-ß) isoforms. Nonclassic uterotonic agonists, such as growth factors and cytokines, also activate the phosphatidylinositol (PI)-signaling pathway, in this case through tyrosine kinase receptor-mediated activation of the phospholipase C-γ (PCL-γ) isoforms. Several recent reports have demonstrated that activation of the PI-signaling pathway in uterine myocytes results in the development of cytosolic calcium oscillation-like phenomena. These cytosolic calcium oscillations appear to arise from receptive cycles of emptying and refill of the endoplasmic reticulum calcium stores along with the influx of extracellular calcium. Calcium release from the endoplasmic reticulum calcium stores appears to be mediated by the inositol trisphosphate-sensitive and the ryanodine-sensitive receptor/channels; isoforms for both of these receptor/channels have been shown to be expressed in myometrial tissue. In summary, receptor-mediated activation of the PI-signaling pathway and the generation of cytosolic calcium oscillations appear to produce intermitten calcium transients that result in the development and maintenance of phasic myometrial contractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fuchs AR. Plasma membrane receptors regulating myometrial contractility and their hormonal modulation. Semin Perinatol 1995;19:15–30.

    Article  CAS  PubMed  Google Scholar 

  2. Marc S, Leiber D, Harbon S. Carbachol and oxytocin stimulate the generation of inositol phosphates in the guinea pig myometrium. FEBS Lett 1986;201:9–14.

    Article  CAS  PubMed  Google Scholar 

  3. Schrey MP, Comford PA, Read AM, Steer PJ. A role for phosphoinositide hydrolysis in human uterine smooth muscle during parturition. Am J Obstet Gynecol 1988;159:964–70.

    Article  CAS  PubMed  Google Scholar 

  4. Phillippe M. Mechanisms underlying phasic contractions of pregnant rat myometrium stimulated with aluminum fluoride. Am J Obstet Gynecol 1994;170:981–90.

    Article  CAS  PubMed  Google Scholar 

  5. Phillippe M, Saunders T, Basa A. Intracellular mechanisms underlying prostaglandin F2α-stimulated phasic myometrial contractions. Am J Physiol 1997;273:E665–73.

    CAS  PubMed  Google Scholar 

  6. Phillippe M, Basa A. Effects of sodium and calcium channel blockade on cytosolic calcium oscillations and phasic contractions of myometrial tissue. J Soc Gynecol Invest 1997;4:72–7.

    Article  CAS  Google Scholar 

  7. Phillippe M, Basa A. (+)cis-Dioxolane stimulation of cytosolic calcium oscillations and phasic contractions of myometrial smooth muscle. Biochem Biophys Res Comm 1997;231:722–25.

    Article  CAS  PubMed  Google Scholar 

  8. Phillippe M, Chien E, Freij M, Saunders T. Ionomycin stim-ulated-phasic myometrial contractions. Am J Physiol 1995;269:E779–85.

    CAS  PubMed  Google Scholar 

  9. Criswell KA, Stuenkel EL, Loch-Caruso R. Lindane increases intracellular calcium in rat myometrial smooth muscle cells through modulation of inositol 1,4,5-trisphosphate-sensitive stores. J Pharmacol Exper Ther 1994;270:1015–24.

    CAS  Google Scholar 

  10. Lynn S, Morgan JM, Gillespie JI Greenwell JR. A novel ryanodine sensitive calcium release mechanism in cultured human myometrial smooth-muscle cells. FEBS Lett 1993;330:227–30.

    Article  CAS  PubMed  Google Scholar 

  11. Kasai Y, Iino M, Tsutsumi O, Taketani Y, Endo M. Effects of cyclopiazonic acid on rhythmic contractions in uterine smooth muscle bundles of the rat. Br J Pharmacol 1994;112:1132–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Young RC, Hession RO. Intra- and intercellular calcium waves in cultured human myometrium. J Muscle Res Cell Motil 1996;17:349–55.

    Article  CAS  PubMed  Google Scholar 

  13. Wray S. Uterine contraction and physiological mechanisms of modulation. Am J Physiol 1993;264:0–18.

    Article  CAS  Google Scholar 

  14. Word RA, Casey ML, Kamm KE, Stull JT. Effects of cGMP on [Ca2+]i, myosin light chain phosphorylation, and contraction in human myometrium. Am J Physiol 1991;260:C861–7.

    Article  CAS  PubMed  Google Scholar 

  15. Khac LD, Arnaudeau S, Lepretre N, Mironneau J, Harbon S. Beta adrenergic receptor activation attenuates the generation of inositol phosphates in the pregnant rat myometrium. Correlation with inhibition of Ca++ influx, a cAMP-independent mechanism. J Pharmacol Exp Ther 1996;276:130–6.

    CAS  PubMed  Google Scholar 

  16. Norman J. Nitric oxide and the myometrium. Pharmacol Ther 1996;70:91–100.

    Article  CAS  PubMed  Google Scholar 

  17. Izumi H, Garfield RE. Relaxant effects of nitric oxide and cyclic GMP on pregnant rat uterine longitudinal smooth muscle. Eur J Obstet Gynecol Reprod Biol 1995;60:171–80.

    Article  CAS  PubMed  Google Scholar 

  18. Clapham DE. Calcium Signaling. Cell 1995;80:259–68.

    Article  CAS  PubMed  Google Scholar 

  19. Berridge MJ. Inositol trisphosphate and calcium signaling. Nature 1993;361:315–25.

    Article  CAS  PubMed  Google Scholar 

  20. Bootman MD, Berridge MJ. The elemental principles of calcium signaling. Cell 1995;83:675–8.

    Article  CAS  PubMed  Google Scholar 

  21. Miyazaki S. Inositol trisphosphate receptor mediated spatio-temporal calcium signaling. Curr Opin Cell Biol 1995;7:190–6.

    Article  CAS  PubMed  Google Scholar 

  22. Li YX, Keizer J, Stojilkovic SS, Rinzel J. Ca2+ excitability of the ER membrane: An explanation for IP3-induced Ca2+ oscillations. Am J Physiol 1995;269:0079–92.

    Google Scholar 

  23. Balla T, Baukal AJ, Guillemette G, Catt KJ. Multiple pathways of inositol polyphosphate metabolism in angiotensin-stimulated adrenal glomerulosa cells. J Biol Chem 1988;263:4083–91.

    CAS  PubMed  Google Scholar 

  24. Balla T, Simm SS, Baukal AJ, Rhee SG, Catt KJ. Inositol polyphosphates are not increased by overexpression of Ins(l,4,5)P3 3-kinase but show cell cycle dependent changes in growth factor-stimulated fibroblasts. Mol Biol Cell 1994;5:17–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sorrentino V, Volpe P. Ryanodine receptors: How many, where and why? Trends Physiol Sci 1993;14:98–103.

    Article  CAS  Google Scholar 

  26. Sorrentino V. The ryanodine receptor family of intracellular calcium release channels. Adv Pharmacol 1995;33:67–90.

    Article  CAS  PubMed  Google Scholar 

  27. Harootunian AT, Kao JPY, Paranjape S. Tsien RY. Generation of calcium oscillations in fibroblasts by positive feedback between calcium and IP3. Science 1991;251:75–8.

    Article  CAS  PubMed  Google Scholar 

  28. Cobbold PH, Sanchez-Bueno A, Dixon CJ. The hepatocyte calcium oscillator. Cell Calcium 1991;12:87–95.

    Article  CAS  PubMed  Google Scholar 

  29. Woods NM, Cuthbertson KSR, Cobbold PH. Phorbol-ester-induced alterations of free calcium ion transients in single rat hepatocytes. Biochem J 1987;246:619–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Charles AC, Naus CCG, Zhu D, Kidder GM, Dirksen ER. Intercellular calcium signaling via gap junctions in glioma cells. J Cell Biol 1992;118:195–201.

    Article  CAS  PubMed  Google Scholar 

  31. Boitano S, Dirksen ER, Sanderson MJ. Intercellular propagation of calcium waves mediated by inositol trisphosphate. Science 1992;258:292–5.

    Article  CAS  PubMed  Google Scholar 

  32. Sanderson MJ. Intercellular waves of communication. News Physiol Sci 1996;11:262–9.

    Google Scholar 

  33. Ryu SH, Suh PG, Cho KS, Lee KY, Rhee SG. Bovine brain cytosol contains three immunologically distinct forms of inositol phospholipid-specific phospholipase C. Proc Natl Acad Sci USA 1987;84:6649–53.

    Article  CAS  PubMed  Google Scholar 

  34. Suh PG, Ryu SH, Choi WC, Lee KY, Rhee SG. Monoclonal antibodies to three phospholipase C isozymes from bovine brain. J Biol Chem 1988;263:14497–504.

    CAS  PubMed  Google Scholar 

  35. Suh PG, Ryu SH, Moon KH, Suh HW, Rhee SG. Cloning and sequence of multiple forms of phospholipase C. Cell 1988;54:161–9.

    Article  CAS  PubMed  Google Scholar 

  36. Suh PG, Ryu SH, Moon KH, Suh HW, Rhee SG. Inositol phospholipid-specific phospholipase C: Complete cDNA and protein sequences and sequence homology to tyrosine kinase-related oncogene products. Proc Natl Acad Sci USA 1988;85:5419–23.

    Article  CAS  PubMed  Google Scholar 

  37. Rhee SG, Choi KD. Multiple forms of phospholipase C isozymes and their activation mechanisms. Adv Second Messenger Phosphoprotein Res 1992;26:35–61.

    CAS  PubMed  Google Scholar 

  38. Lee SB, Rhee SG. Significance of PIP2 hydrolysis and regulation of phospholipase C isozymes. Curr Opin Cell Biol 1995;7:183–9.

    Article  CAS  PubMed  Google Scholar 

  39. Noh DY, Shin SH, Rhee SG. Phosphoinositide-specific phospholipase C and mitogenic signaling. Biochem Biophys Acta 1995;1242:99–114.

    PubMed  Google Scholar 

  40. Bahk YY, Lee YH, Lee TG, Seo J, Ryu SH, Suh PG. Two forms of phospholipase C-β l generated by alternative splicing. J Biol Chem 1994;269:8240–5.

    CAS  PubMed  Google Scholar 

  41. Jhon DY, Lee HH, Park D, et al. Cloning, sequencing, purification, and Gq-dependent activation of phospholipase C-β3. J Biol Chem 1993;268:6654–61.

    CAS  PubMed  Google Scholar 

  42. Sternweis PC, Smrcka AV. G proteins in signal transduction: the regulation of phospholipase C. Ciba Found Symp 1993;176:96–106.

    CAS  PubMed  Google Scholar 

  43. Lee CW, Park DJ. Lee KH, Kim CG, Rhee S. Purification, molecular cloning, and sequencing of phospholipase C-beta 4. J Biol Chem 1993;268:21318–27.

    CAS  PubMed  Google Scholar 

  44. Ku CY, Qian A, Wen Y, Anwer K, Sanborn BM. Oxytocin stimulates myometrial guanosine triphosphatase and phospho-lipase-C activities via coupling to Gα q/11. Endocrinology 1995;136:1509–15.

    Article  CAS  PubMed  Google Scholar 

  45. Phaneuf S, Carrasco MP, Europe-Finner GN, Hamilton CH, Bernal AL. Multiple G-proteins and phospholipase C isoforms in human myometrial cells: Implication for oxytocin action. J Clin Endocrinol Metabol 1996;81:2098–103.

    CAS  Google Scholar 

  46. Bieber E, Stratman T, Sanseverino M, Sangueza J, Phillippe M. Phosphatidylinositol-specific phospholipase C isoform expression in pregnant and nonpregnant rat myometrial tissue. Am J Obstet Gynecol 1998;178:848–54.

    Article  CAS  PubMed  Google Scholar 

  47. Lajat S, Tanfin Z, Guillon G, Harbon S. Modulation of phospholipase C pathway and level of Gqα/Gllα in rat myometrium during gestation. Am J Physiol 1996;271:C895–904.

    Article  CAS  PubMed  Google Scholar 

  48. Hepler JR, Gilman AG. G proteins. Trends Biochem Sci 1992;17:383–7.

    Article  CAS  PubMed  Google Scholar 

  49. Smrcka AV, Hepler JR. Brown KD, Sternweis PC. Regulation of polyphosphoinositide-specific phospholipase C activity by purified Gq. Science 1991;251:804–7.

    Article  CAS  PubMed  Google Scholar 

  50. Wu D, Katz A. Lee CH, Simon M. Activation of phospholipase C by α 1-adrenergic receptors is mediated by the α subunit of Gq family. J Biol Chem 1992;267:25798–802.

    CAS  PubMed  Google Scholar 

  51. Dickerson JM, Hill SJ. Coupling of histamine H1 and adenosine Al receptors to phospholipase C in DDT 1MF-2 cells: Synergistic interactions and regulation by cyclic AMP. Biochem Soc Trans 1993;21:1124–29.

    Article  Google Scholar 

  52. Stehno-Bittel L, Krapivinsky G, Krapivinsky L, Perez-Terzic C, Clapham DE. The G protein beta gamma subunit transduces the muscarinic receptor signal for Ca2+ release in Xenopus oocytes. J Biol Chem 1995;276:30068–74.

    Google Scholar 

  53. Wu D, Lee CH, Rhee SG, Simon MI. Activation of phospho-lipase C by the alpha subumts of the Gq and G11 proteins in transfected Cos-7 cells. J Biol Chem 1992;267:1811–17.

    CAS  PubMed  Google Scholar 

  54. Boulton TG, Stahl N, Yancopoulos G. Ciliary neurotrophic factor/leukemia inhibitory factor/interleukin 6/on-costatin M family of cytokines induces tyrosine phosphorylation of a common set of proteins overlapping those induced by other cytokines and growth factors. J Biol Chem 1994;269:11648–55.

    CAS  PubMed  Google Scholar 

  55. Hempel WM, DeFranco AL. Expression of phospholipase C isozymes by murine B lymphocytes. J Immunol 1991;146:3713–20.

    CAS  PubMed  Google Scholar 

  56. Phillippe M, Harrison HH. Gestational modulation of myorne-trial proteins in the timed-pregnant Sprague-Dawley rat. Life Sci 1992;50:1189–200.

    Article  CAS  PubMed  Google Scholar 

  57. Carrasco MP, Phaneuf S, Asboth G, Lopez-Bernal A. Flupro-stenol activates phospholipase C and Ca2+ mobilization in human myometrial cells. J Clin Endocrinol Metab 1996;81:2104–10.

    CAS  PubMed  Google Scholar 

  58. Gardner RM, Lingham RB, Stancel GM. Contractions of the isolated uterus stimulated by epidermal growth factor. FASEB J 1987;1:224–8.

    Article  CAS  PubMed  Google Scholar 

  59. Anwer K, Monga M, Sanborn BM. Epidermal growth factor increases phosphoinositide turnover and intracellular free calcium in an immortalized human myometrial cell line independent of the arachidonic metabolic pathway. Am J Obstet Gynecol 1996;174:676–81.

    Article  CAS  PubMed  Google Scholar 

  60. Palmier B. Leiber D, Harbon S. Pervanadate mediated an increased generation of inositol phosphates and tension in rat myometrium. Activation and phosphorylation of phospholipase C-γl. Biol Reprod 1996;54:1383–9.

    Article  CAS  PubMed  Google Scholar 

  61. Gokita T, Miyauchi Y, Uchida MK. Effects of tyrosine kinase inhibitor, genistein, and phosphotyrosine-phosphatase inhibitor, orthovanadate, on Ca2+-free contraction of uterine smooth muscle of the rat. Gen Pharmacol 1994;25:1673–7.

    Article  CAS  PubMed  Google Scholar 

  62. Kim BK, Ozaki H, Lee SM, Karaki H. Increased sensitivity of rat myometrium to the contractile effect of platelet activating factor before delivery. Br J Pharmacol 1995;115:1211–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhu YP, Word RA, Johnston JM. The presence of platelet-activation factor binding sites in human myometrium and their role in uterine contraction. Am J Obstet Gynecol 1992;166:1222–8.

    Article  CAS  PubMed  Google Scholar 

  64. Izumi T, Shimizu T. Platelet-activating factor receptor: Gene expression and signal transduction. Biochim Biophvs Acta 1995;1259:317–33.

    Article  Google Scholar 

  65. Nucifora FC, Sharp AH, Milgram SL, Ross CA. Inositol 1,4,5-trisphosphate receptors in endocrine cells: Localization and association in hetero- and homotetramers. Mol Biol Cell 1996;7:949–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Furuichi T, Yoshikawa S, Miyawaki A, Wada K, Maeda N, Mikoshiba K. Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature 1989;342:32–8.

    Article  CAS  PubMed  Google Scholar 

  67. Mignery GA, Newton CL, Archer BT, Sudhof TC. Structure and expression of the rat inositol 1,4,5-trisphosphate receptor. J Biol Chem 1990;265:12679–85.

    CAS  PubMed  Google Scholar 

  68. Sudhof TC, Newton CL, Archer BT, Ushkaryov YA, Mignery GA. Structure of a novel InsP3 receptor. EMBO J 1991;10:3199–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Blondel O. Takeda J, Janssen H, Seino S, Bell GI. Sequence and functional characterization of a third inositol trisphosphate receptor subtype, IP3R-3. expressed in pancreatic islets, kidney. gastrointestinal tract, and other tissues. J Biol Chem 1993;268:11356–63.

    CAS  PubMed  Google Scholar 

  70. Nakagawa T, Okano H, Furuichi T, Aruga J, Mikoshiba K. The subtype of the mouse inositol 1,4,5-trisphosphate receptor are expressed in a tissue-specific and developmentally specific manner. Proc Natl Acad Sci USA 1991;88:6244–8.

    Article  CAS  PubMed  Google Scholar 

  71. Ross CA, Danoff SK, Schell MJ, Snyder SH, Ullrich A. Three additional inositol 1,4,5-trisphosphate receptors: Molecular cloning and differential localization in brain and peripheral tissues. Proc Natl Acad Sci USA 1992;89:4265–9.

    Article  CAS  PubMed  Google Scholar 

  72. De Smedt H, Missiaen L, Parys JB, et al. Determination of relative amounts of inositol trisphosphate receptor mRNA iso-forms by ratio polymerase chain reaction. J Biol Chem 1994;269:21691–8.

    PubMed  Google Scholar 

  73. Mignery GA, Sudhol TC, Takei K, De Camilli P. Putative receptor for inositol 1,4,5-trisphosphate similar to ryanodine receptor. Nature 1989;342:192–5.

    Article  CAS  PubMed  Google Scholar 

  74. Supattapone S, Worley PF, Baraban JM, Snyder SH. Solubilization, purification, and characterization of an inositol trisphosphate receptor. J Biol Chem 1988;263:1530–4.

    CAS  PubMed  Google Scholar 

  75. Zhang L, Bradley ME, Khoyi M, Westfall DP, Buxton ILO. Inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphos-phate binding sites in smooth muscle. Br J Pharmacol 1993;109:905–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Morgan JM, De Smedt H, Gillespie JI. Identification of three isofonns: of the InsP3 receptor in human myometrial smooth muscle. Pflugers Arch 1996;431:697–705.

    Article  CAS  PubMed  Google Scholar 

  77. Crumb R, Sanseverino M, Phillippe M. Inositol 1,4,5-trisphosphate receptor isoform expression in rat myometrial tissue during pregnancy. J Soc Gynecol Invest 1997;4 (Suppl):260A.

    Google Scholar 

  78. Takeshima H, Nishimura S, Matsumoto T, et al. Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 1989;339:439–45.

    Article  CAS  PubMed  Google Scholar 

  79. Otsu K, Willard HF, Khanna VK, et al. Molecular cloning of cDNA encoding the Ca2+ release channel (ryanodine receptor) of rabbit cardiac muscle sarcoplasmic reticulum. J Biol Chem 1990;265:13472–83.

    CAS  PubMed  Google Scholar 

  80. Hakamata Y, Nakai J, Takeshima H, Imoto K. Primary structure and distribution of a novel ryanodine receptor/ calcium release channel from rabbit brain. FEBS Lett 1992;312:229–35.

    Article  CAS  PubMed  Google Scholar 

  81. Giannini G, Clementi E, Ceci R, Marziali G, Sorrentino V. Expression of a ryanodine receptor-Ca2+ channel that is regulated by TGF-β. Science 1992;257:91–4.

    Article  CAS  PubMed  Google Scholar 

  82. Giannini G, Conti A, Mammarella S, Scrobogna M, Sorrentino V. The ryanodine receptor/calcium channel genes are widely and differentially expressed in murine brain and peripheral tissues. J Cell Biol 1995;128:893.

    Article  CAS  PubMed  Google Scholar 

  83. Lai FA, Dent M, Wickenden C, et al. Expression of a cardiac Ca2+ -release channel isoform in mammalian brain. Biochem J 1992;288:553–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Verma A, Hirsch DJ, Snyder SH. Calcium pools mobilized by calcium or inositol 1,4,5-trisphosphate are differentially localized in rat heart and brain. Mol Biol Cell 1992;3:621–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hermann-Frank A, Darling E, Meissner G. Functional characterization of the Ca2+-gated Ca2+ release channel of vascular smooth muscle sarcoplasmic reticulum. Pflugers Arch 1991;418:353–9.

    Article  Google Scholar 

  86. Galione A. Ca2+-induced Ca2+ release and its modulation by cyclic ADP-ribose. Trends Physiol Sci 1992;13:304–6.

    Article  CAS  Google Scholar 

  87. Galione A. Cyclic ADP-nbose, the ADP-ribosyl cyclase pathway and calcium signaling. Mol Cell Endocrinol 1994;98:125–31.

    Article  CAS  PubMed  Google Scholar 

  88. Lee HC, Aahus R, Walseth TF. Calcium mobilization by dual receptors during fertilization of sea urchin eggs. Science 1993;261:352–5.

    Article  CAS  PubMed  Google Scholar 

  89. Meszaros LG, Bak J, Chu A. Cyclic ADP-ribose as an endog-enous regulator of the non-skeletal type ryanodine receptor Ca2+ channel. Nature 1993;364:76–9.

    Article  CAS  PubMed  Google Scholar 

  90. Galione A, Lee HC, Busa WB. Ca2+-induced Ca2+ release in sea urchin egg homogenates: Modulation by cyclic ADP-ribose. Science 1991;253:1143–6.

    Article  CAS  PubMed  Google Scholar 

  91. Zimanyi I, Pessah IN. Comparison of [3H] ryanodine receptors and Ca2+ release from rat cardiac and rabbit skeletal muscle sarcoplasmic reticulum. J Pharmacol Exp Ther 1991;256:938–46.

    CAS  PubMed  Google Scholar 

  92. Galione A, McDougall A, Busa WB, Wilmott N, Gillot I, Whitaker M. Redundant mechanisms of calcium-induced calcium release underlying calcium waves during fertilization of sea urchin eggs. Science 1993;261:348–52.

    Article  CAS  PubMed  Google Scholar 

  93. Morgan JM, Gillespie JI. The modulation and characterization of the Ca2+-induced Ca2+ release mechanism in cultured human myometrial smooth muscle cells. FEBS Lett 1995;369:295–300.

    Article  CAS  PubMed  Google Scholar 

  94. Phillippe M, Basa A. The effects of ruthenium red, an inhibitor of calcium-induced calcium release, on phasic myometrial contractions. Biochem Biophys Res Comm 1996;221:656–61.

    Article  CAS  PubMed  Google Scholar 

  95. Ledbetter MW, Preiner JK, Louis CF, and Mickelson JR. Tissue distribution of ryanodine receptor isoforms and alleles determined by reverse transcription polymerase chain reaction. J Biol Chem 1994;269:31544–51.

    CAS  PubMed  Google Scholar 

  96. Awad SS, Lamb HK, Morgan JM, Dunlop W, Gillespie JI. Differential expression of ryanodine receptor RyR2 mRNA in the non-pregnant and pregnant human myometrium. Biochem J 1997;322:777–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Principe D, Sanseverino M, Phillippe M. Expression of ryanodine receptor isoforms in pregnant rat myometrial tissue. J Soc Gynecol Invest 1997;4 (Suppl):260A.

    Google Scholar 

  98. Hogue CJ, Hargraves MA. Preterm birth in the African-American community. Semin Perinatol 1995;19:255–62.

    Article  CAS  PubMed  Google Scholar 

  99. Wilcox A, Skjaerven R, Buckens P, Kiely J. Birth weight and perinatal mortality: A comparison of the United States and Norway. JAMA 1995;273:709–11.

    Article  CAS  PubMed  Google Scholar 

  100. Hill WC. Risks and complications of tocolysis. Clin Obstet Gynecol 1995;38:725–45.

    Article  CAS  PubMed  Google Scholar 

  101. Keirse MJ. New perspectives for the effective treatment of preterm labor. Am J Obstet Gynecol 1995;173:618–28.

    Article  CAS  PubMed  Google Scholar 

  102. Higby K, Xenakis EMJ, Pauerstein CJ. Do tocolytic agents stop preterm labor? A critical and comprehensive review of efficacy and safety. Am J Obstet Gynecol 1993;168:1247–59.

    Article  CAS  PubMed  Google Scholar 

  103. Park ES, Won JH, Han KJ, et al. Phospholipase C-δl and oxytocin receptor signalling: evidence of its role as an effector. Biochem J 1998;331:283–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Im MJ, Russell MA, Feng JF. Transglutaminase II: a new class of GTP-binding protein with new biological functions. Cell Signal 1997;9:477–82.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Phillippe MD.

Additional information

Supported by the United States Public Health Service, National Institute of Child Health and Humanl Developmtent, grants HD28506 and HD32449.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phillippe, M., Chien, E.K. Intracellular Signaling and Phasic Myometrial Contractions. Reprod. Sci. 5, 169–177 (1998). https://doi.org/10.1177/107155769800500403

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/107155769800500403

Key words

Navigation