Skip to main content

Advertisement

Log in

Ovine Fetal-Placental Cocaine Pharmacokinetics During Continuous Cocaine Infusion

  • Published:
The Journal of the Society for Gynecologic Investigation: JSGI Aims and scope Submit manuscript

Abstract

Objective

TO investigate fetal-placental cocaine clearance, and to determine the fetal catecholamine and cardiovascular responses to continuous intravenous cocaine infusion in fetal sheep.

Methods

Eleven pregnant ewes and their fetuses (121 ± 2 days’ gestation; term 150 days) were chronically instrumented. Fetuses received intravenous cocaine at 0.05, 0.1, or 0.2 mg/kg/minute. Fetal cardiovascular and hematologic measurements were made before and serially for 90 minutes after initiation of the cocaine infusion.

Results

Steady-state fetal plasma cocaine concentrations were observed by 15 minutes of infusion and averaged 136 ± 77, 318 ± 65, and 610 ± 36 ng/mL, respectively, at each dose. Fetal-placental cocaine clearance rate was independent of dose (331 ± 39 mL/kg/minute), indicating that it is a first-order pharmacokinetic process. Fetal plasma concentration of benzoylecgonine, a principle cocaine metabolite, increased throughout the study to approximately 25% above cocaine levels by 90 minutes. Tliere were significant increases in fetal heart rate (from 169 ± 11 to 242 ±36 beats per minute), mean blood pressure (from 53 ± 4 to 63 ± 5 mmHg), and systolic blood pressure (from 68 + 2 to 80 ± 5 mmHg), with a corresponding increase in catecholamine levels seen in the fetuses infused with 0.2 mg/kg/minute. These changes were not seen in the fetuses given lower doses of cocaine.

Conclusion

Fetal-placental clearance of cocaine is a rapid, first-order pharmacokinetic process. During prolonged cocaine exposure, plasma benzoylecgonine concentrations accumulate significantly. Significant catecholamine and cardiovascular changes are seen in fetal sheep with a continuous infusion of cocaine at 0.2 mg/kg/minute or greater. (J Soc Gynecol Invest 1996;3:185-90)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acker D, Sachs BP, Tracey KJ, et al. Abruptio placentae associated with cocaine use. Am J Obstet Gynecol 1983;146:220–1.

    Article  CAS  Google Scholar 

  2. Ney JA, Dooley SL, Keith LG, et al. The prevalence of substance abuse in patients with suspected preterm labor. Am J Obstet Gynecol 1990;162:1562–7.

    Article  CAS  Google Scholar 

  3. Zuckerman B, Frank DA, Hingson R, et al. Effects of maternal marijuana and cocaine on fetal growth. N Engl J Med 1989;320:762–8.

    Article  CAS  Google Scholar 

  4. Henderson MG, McMillen BA. Effects of prenatal exposure to cocaine or related drugs on rat development and neurologic indices. Brain Res Bull 1990;24:207–12.

    Article  CAS  Google Scholar 

  5. Chasnoff LJ, Hunt CE, Kletter R, Kaplan D. Prenatal cocaine exposure is associated with respiratory pattern abnormalities. Am J Dis Child 1989,143:583–7.

    CAS  PubMed  Google Scholar 

  6. DeVane CL, Simpkins JW, Miller RL, Braun SB. Tissue distribution of cocaine in the pregnant rat. Life Sci 1989;45:1271–6.

    Article  CAS  Google Scholar 

  7. Robinson SE, Enters EK, Jackson GF, et al. Maternal and fetal brain and plasma levels of cocaine and benzoylecgonine after acute or chronic maternal intravenous administration of cocaine. J Pharm Exp Ther 1994;217:1234–9.

    Google Scholar 

  8. Burchfield DJ, Graham EM, Abrahms RM, Gerhardt KJ. Cocaine alters behavioral states in fetal sheep. Dev Brain Res 1990;56:41–5.

    Article  CAS  Google Scholar 

  9. Burchfield DJ, Abrams RM. Cocaine depresses cerebral glucose utilization in the fetal sheep. Brain Res 1993;73:283–8.

    Article  CAS  Google Scholar 

  10. Chan K, Dodd P, Day L, et al. Fetal catecholamine, cardiovascular and neurobehavioral responses to cocaine. Am J Obstet Gynecol 1992;167:1616–23.

    Article  CAS  Google Scholar 

  11. DeVane CL, Burchfield DJ, Abrams RM, Miller RL, Braun SB. Disposition of cocaine in pregnant sheep. Dev Pharmacol Ther 1991;16:123–9.

    Article  CAS  Google Scholar 

  12. Covert RF, Schreiber MD, Tebbet IR, Torgerson LJ. Hemodynamic and cerebral blood flow effects of cocaine, cocaethylene and benzoylecgonine in conscious and anesthetized fetal lambs. J Pharmacol Exp Ther 1994;270:118–26.

    CAS  PubMed  Google Scholar 

  13. Woods JR, Plessinger MA, Scott K, Miller RK. Prenatal cocaine exposure to the fetus: A sheep model for cardiovascular evaluation. Ann N Y Acad Sci 1989;562:267–79.

    Article  CAS  Google Scholar 

  14. Yonetani M, Huang CC, Lajevardi N, Pastuszko A, Delivoria-Papdopoulous M, Anday E. Effect of acute cocaine injection on the extracellular level of dopamine, blood flow, and oxygen pressure in brain of newborn piglets. Biochem Med Metab Biol 1994;51:91–7.

    Article  CAS  Google Scholar 

  15. Schalzo FM, Pirmozic S, Burge LJ, et al. Effects of labetalol on cocaine pharmacokinetic in neonatal piglets. Dev Pharm Ther 1993;20:54–63.

    Article  Google Scholar 

  16. Sandberg JA, Olsen GD. Cocaine pharmacokinetics in the pregnant guinea pig. J Pharmacol Exp Ther 1991;258:477–82.

    CAS  PubMed  Google Scholar 

  17. Sandberg JA, Olsen GD. Cocaine and metabolite concentration in the fetal guinea pig after chronic maternal cocaine administration. J Pharmacol Exp Ther 1992;260:587–91.

    CAS  PubMed  Google Scholar 

  18. Binienda Z, Bailey JR, Duhart HM, Sliker W, Paule MG. Transplacental pharmacokinetics and maternal/fetal plasma concentrations of cocaine in pregnant macaques near term. Drug Metab Dispos 1993;21:364–8.

    CAS  PubMed  Google Scholar 

  19. Duhart HM, Fogle CM, Gillam MP, Bailey JR, Slikker W, Paule MG. Pharmacokinetics of cocaine in the pregnant and nonpregnant rhesus monkey. Repro Tox 1993;7:429–37.

    Article  CAS  Google Scholar 

  20. DiStefano JJ. Noncompartmental vs compartmental analysis: Some bases for choice. Am J Phys 1982;12:R1–6.

    Google Scholar 

  21. Ross MG, Sherman DJ, Day L, Humme J. Stimuli for fetal swallowing factors. Am J Obstet Gynecol 1989;161:1559–65.

    Article  CAS  Google Scholar 

  22. Robillard JE, MatsonJR, Session C, Smith FG. Developmental aspects of renal tubular reabsorption of water in lamb fetuses. Pediatr Res 1979;13:1172–6.

    Article  CAS  Google Scholar 

  23. Peuler JD, Johnson GA. Simultaneous single isotope radioenzymatic assay of plasma norepinephrine, epinephrine, and dopamine. Life Sci 1977;21:625–36.

    Article  CAS  Google Scholar 

  24. Sandberg JA, Olson GD. Microassay for the simultaneous determination of cocaine, norcaine, benzoylecgonine, and benzoylnorecgonine by high-performance liquid chromatography. J Chromatogr 1990;525:113–21.

    Article  CAS  Google Scholar 

  25. Varian Sample Preparation Products. Cocaine and benzoylecgonine extraction procedure. Bond Elut Certify instruction manual. Harbor City, California: Varian, 1994:5.

    Google Scholar 

  26. Pitts DK, Marwah J. Neuropharmacology of cocaine: Role of monoaminergic systems. Monogr Nueral Sci 1987;13:34–54.

    CAS  Google Scholar 

  27. Schenker S, Yang Y, Johnson RF, Downing JW, Schenken RS, Henderson GI, King TS. The transfer of cocaine and its metabolites across the term human placenta. Clin Pharmacol Ther 1993;53:329–39.

    Article  CAS  Google Scholar 

  28. Edwards DJ, Bowles SK. Protein binding of cocaine in human serum. Pharm Res 1988;5:440–2.

    Article  CAS  Google Scholar 

  29. Roe DA, Little BB, Bawdon RE, Gilsrap LC. Metabolism of cocaine by human placentas: Implications for fetal exposure. Am J Obstet Gynecol 1990;163:715–8.

    Article  CAS  Google Scholar 

  30. Ambre J. the urinary excretion of cocaine and metabolites in humans: A kinetic analysis of published data. J Anal Toxicol 1985;9:241–5.

    Article  CAS  Google Scholar 

  31. Mahone PR, Scott K, Sleggs G, D’Antoni T, Woods JR. Cocaine and metabolites in amniotic fluid may prolong fetal drug exposure. Am J Obstet Gynecol 1994;171:465–9.

    Article  CAS  Google Scholar 

  32. Madden JA, Powers RH. Effect of cocaine and cocaine metabolites on cerebral arteries in-vitro. Life Sci 1990;46:635–45.

    Article  Google Scholar 

  33. Schreiber MD, Maden JA, Covert RF, Torgerson LJ. Effects of cocaine, benzoylecgonine, and cocaine metabolites on cannulated pressurized fetal sheep cerebral arteries. J Appl Physiol 1994;77:834–9.

    Article  CAS  Google Scholar 

  34. Spear LP, Frambes NA, Kirstein CL. Fetal and maternal brain and plasma levels of cocaine and benzoylecgonine following chronic subcutaneous administration of cocaine during gestation in rats. Psychopharmacology 1989;97:427–31.

    Article  CAS  Google Scholar 

  35. Dixon SD, Bejar R. Echoencephalographic findings in neonates associated with maternal cocaine and methamphetamine use: Incidence and clinical correlates. J Pediatr 1989;115:770–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by a grant from the USFHS DA-07753 and a Perinatal Biology Training Grant HD-07013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Downs, T., Padbury, J., Blount, L. et al. Ovine Fetal-Placental Cocaine Pharmacokinetics During Continuous Cocaine Infusion. Reprod. Sci. 3, 185–190 (1996). https://doi.org/10.1177/107155769600300405

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/107155769600300405

Key words

Navigation