Skip to main content
Log in

Effect of Physiologic Perfusion-Fixation on the Morphometrically Evaluated Dimensions of the Term Placental Cotyledon

  • Maternal-Fetal Medicine
  • Published:
The Journal of the Society for Gynecologic Investigation: JSGI Aims and scope Submit manuscript

Abstract

Objective

TO estimate the in vivo dimensions of the fetal villous tree of the normal term placenta.

Methods

Dual-circuit perfusion-fixation of a cotyledon from eight normal term placentas was performed with random intra-cotyledon tissue sampling. Stereologic methods were used to derive estimates of villous (intermediate and terminal) surface area and volume, and star volume (a measure of villous volume).

Results

Villous surface area (mean 20.9 m2 [standard deviation 1.8]), capillary surface area (12.8 m2 [1.5]), villous volume (469 mL [40]), and capillary volume (80 mL [10]) values were all approximately 50% higher than reported previously. Star volume estimates ranged from 480 to 1350 µm3.

Conclusion

Tissue perfusion-fixation more accurately reconstructs the in vivo state, resulting in higher reference values than previously thought for the fetal villous tree dimensions. Up to one-quarter of fetoplacental blood volume is likely to be accommodated within the placenta at term. (J Soc Gynecol Invest 1996;3:166-71)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hitschold T, Weiss E, Beck T, Müntefenng H, Berle P. Low target birth weight or growth retardation? Umbilical Doppler flow velocity waveforms and histometric analysis ot fetoplacental vascular tree. Am J Obstet Gynecol 1993;168:1260–4.

    Article  CAS  PubMed  Google Scholar 

  2. Karimu AL, Burton GJ. The effects of maternal vascular pressure on the dimensions of the placental capillaries. Br J Obstet Gynaecol 1994;101:57–63.

    Article  CAS  PubMed  Google Scholar 

  3. Mayhew TM, Wadrop E. Placental morphogenesis and the star volumes of villous trees and intervillous pores. Placenta 1994;15:209–17.

    Article  CAS  PubMed  Google Scholar 

  4. Weibel ER. Stereological methods. Practical methods for biological morphometry. Vol. 1. London: Academic Press, 1979.

  5. Gundersen HJG, Bagger P, Bendtsen TF. et al. The new stereological tools: Dissector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis. APMIS 1988;96:857–81.

    Article  CAS  PubMed  Google Scholar 

  6. Cruz-Orive LM, Weibel ER. Recent stereological methods for cell biology: A brief survey. Am J Physiol 258 (Lung Cell Molec Physiol 2) 1990;L148–L56.

    CAS  PubMed  Google Scholar 

  7. Mayhew WTM, Joy CF, Haas JD. Structure-function correlation in the human placenta: The morphometnc diffusion capacity for oxygen at full term. J Anat 1984;139:691–708.

    PubMed  PubMed Central  Google Scholar 

  8. Giles WB, Trudinger BJ, Baird PH. Fetal umbilical artery flow velocity waveforms and placental resistance: Pathological correlation. Br J Obstet Gynaecol, 1985;92:31–8.

    Article  CAS  PubMed  Google Scholar 

  9. Fok RY, Pavlova Z, Benirschke K, Paul RH, Platt LD. The correlation of arterial lesions with umbilical artery Doppler velocimetry in the placentas of small-for-dates pregnancies. Obstet Gynecol 1990;75:578–83.

    CAS  PubMed  Google Scholar 

  10. Feneley MR, Burton GJ. Villous composition and membrane thickness in the human placenta at term: A stereological study using unbiased estimators and optimal fixation techniques. Placenta 1991;12:131–42.

    Article  CAS  PubMed  Google Scholar 

  11. Jackson MR, Walsh AJ, Morrow RJ, Mullen JBM, Lye SJ, Ritchie JWK. Reduced placental villous tree elaboration in small-for-gestational-age pregnancies: Relationship with umbilical artery Doppler waveforms. Am J Obstet Gynecol 1995;172:518–25.

    Article  CAS  PubMed  Google Scholar 

  12. Benirschke K, Kaufmann P. Architecture of normal villous tree. In: Pathology of the human placenta. 3rd ed. New York, Heidelberg, Berlin, London, Paris. Tokyo, Hong Kong, Barcelona: Springer, 1995.

    Chapter  Google Scholar 

  13. Schneider H, Panigel M, Dancis J. Transfer across the perfused human placenta of antipyrine, sodium and leucine. Am J Obstet Gynecol 1972;114:822–8.

    Article  CAS  PubMed  Google Scholar 

  14. Spurr AR. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 1969;26:31–43.

    Article  CAS  PubMed  Google Scholar 

  15. Baddeley AJ, Gundersen HJG, Cruz-Orive LM. Estimation of surface area from vertical sections. J Microsc 1986;142:259–76.

    Article  CAS  PubMed  Google Scholar 

  16. Kaufmann P, Sen D, Schweikhart G. Classification of human placental villi. 1. Histology. Cell Tissue Res 1979;200:409–23.

    Article  CAS  PubMed  Google Scholar 

  17. Hansen and König cited by Kaufmann P. Entwicklung der Plazenta. In: Becker V, Schiebler TH, Kubli F, eds. Die Plazenta des Menschen. Stuttgart. New York: G. Thieme Verlag, 1981:13–50.

    Google Scholar 

  18. Cruz-Orive LM, Weibel ER. Sampling designs for stereology. J Microsc 1981;122:235–57.

    Article  CAS  PubMed  Google Scholar 

  19. Gundersen HJG, Jensen EB. The efficiency of systematic sampling in stereology and its prediction. J Microsc 1987;147:229–63.

    Article  CAS  PubMed  Google Scholar 

  20. Gundersen HJG, Jensen EB. Stereological estimation of the volume-weighted mean volume of arbitrary particles observed on random sections. J Microsc 1985;138:127–42.

    Article  CAS  PubMed  Google Scholar 

  21. Gundersen HJG. Stereology of arbitrary particles. A review of unbiased number and size estimators and the presentation of some new ones. J Microsc 1986;143:3–45.

    Article  CAS  PubMed  Google Scholar 

  22. Cruz-Orive LM, Hunziker EB. Stereology for anisotropic cells: Application to growth cartilage. J Microsc 1986;143:47–80.

    Article  CAS  PubMed  Google Scholar 

  23. Bouw GM, Stoke LAM, Baak JPA, Oort J. Quantitative morphology of the placenta. I. Standardization of sampling. Europ J Obstet Gynecol Reprod Biol 1976;6:325–31.

    Article  Google Scholar 

  24. Hayat M. Fixation for electron microscopy. New York: Academic Press, 1981.

    Book  Google Scholar 

  25. Aherne W, Dunnill MS. Morphometry of the human placenta. Br Med Bull 1966;22:5–8.

    Article  CAS  PubMed  Google Scholar 

  26. Laga EM, Driscoll SG, Munro HN. Quantitative studies of human placenta. I. Morphometry. Biol Neonate 1973;23:231–59.

    Article  CAS  PubMed  Google Scholar 

  27. Teasdale F. Functional significance of the zonal morphologic differences in the normal human placenta. A morphometnc study. Am J Obstet Gynecol 1978;130:773–81.

    Article  CAS  PubMed  Google Scholar 

  28. Burton G, Ingram S, Palmer M. The influence of mode of fixation on morphometrical data derived from terminal villi in the human placenta at term: A comparison of immersion and perfusion fixation. Placenta 1987;8:37–51.

    Article  CAS  PubMed  Google Scholar 

  29. Kaufmann P, Bruns U, Leiser R, Luckhardt M, Winterhager E. The fetal vascularisation of term human placental villi. II. Intermediate and terminal villi. Anat Embryol 1985;173:203–14.

    Article  CAS  Google Scholar 

  30. Bouw GM, Stolte LAM, Baak JPA, Oort J. Quantitative morphology of the placenta. II. The growth of the placenta and the problem of postmaturity. Eur J Obstet Gynecol Reprod Biol 1978;8:31–42.

    Article  CAS  PubMed  Google Scholar 

  31. Bouw GM, Stoite LAM, Baak JPA, Oort J. Quantitative morphology of the placenta. III. The growth of the placenta and its relationship to birth weight. Eur J Obstet Gynecol Reprod Biol 1978;8:73–6.

    Article  CAS  PubMed  Google Scholar 

  32. Brokelmann J, Weiers H, Bald R, Hansmann M. Die Struktur der Plazenta in Epoxid Grossschnitten und im Ultraschallbild. Teil I: Die normale Plazenta. Ultraschall Klin Prax 1988;3:70–8.

    Google Scholar 

  33. Kingdom JCP, Ryan G, Whittle MJ et al. Atrial natriuretic peptide: a vasodilator of the fetoplacental circulation? Am Obstet Gynecol 1991;163:791–800.

    Article  Google Scholar 

  34. Schneider H, Stulc J, Redaelli C, Briner J. Effects of elevated umbilical venous pressure on fluid and solute transport across the isolated perfused human placental cotyledon. Trophoblast Res 1988;3:189–201.

    Google Scholar 

  35. Boyd PA, Brown RA, Stewart WJ. Quantitative structural differences within the normal term human placenta: A pilot study. Placenta 1980;1:337–44.

    Article  CAS  PubMed  Google Scholar 

  36. Sen D, Kaufmann P, Schweikhart G. Classification of human placental villi. II. Morphometry. Cell Tissue Res 1979;200:425–34.

    Article  CAS  PubMed  Google Scholar 

  37. Voigt S, Kaufmann P, Schweikhart G. Zur Abgrenzung norrnaler, artefizieller und pathologischer Strukturen in reifen menschlichen Plazentazotten. I. Morphometnsche Untersuchungen zum Einfluß des Fixationsmodus. Arch Gynäkol 1978;226:347–62.

    CAS  Google Scholar 

  38. Leiser R, Luckhardt M, Kaufmann P, Winterhager E, Bruns U. The fetal vascularisation of term human placental villi. I. Peripheral stem villi. Anat Embryol 1985;173:71–80.

    Article  CAS  Google Scholar 

  39. Vesterby A, Gundersen HJG, Melsen F. Star volume of marrow space and trabeculae of the first lumbar vertebra: Sampling efficiency and biological variation. Bone 1989;10:7–13.

    Article  CAS  PubMed  Google Scholar 

  40. Karimu AL, Burton GJ. The inter-relationships between the fetal and maternal placental circulations—A new stereological approach. J Anat 1993;182:131.

    Google Scholar 

  41. Kaufmann P. Development and differentiation of the human placental villous tree. Biblthca Anat 1982;22:29–39.

    Google Scholar 

  42. Castelluci M, Scheper M, Scheffen I, Celona A, Kaufmann P. The development of the human placental villous tree. Anat Embryol 1990;181:117–28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We are indebted to Prof. A. E. Friess, Institute for Animal Anatomy University of Berne, for use of the Antocut dissector: Karl Babl and Barbara Krieger, Institute of Anatomy, University of Berne, for artistic help: and Dr. Christiane Krebs and Dr. Ursula Sommer for assistance with manuscript preparation. Supported by funds from the Wilhelm Sander Stiftung, Germany, and Swiss National Foundation grant no 32-32502.91.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luckhardt, M., Leiser, R., Kingdom, J. et al. Effect of Physiologic Perfusion-Fixation on the Morphometrically Evaluated Dimensions of the Term Placental Cotyledon. Reprod. Sci. 3, 166–171 (1996). https://doi.org/10.1177/107155769600300402

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/107155769600300402

Key words

Navigation