Skip to main content

Advertisement

Log in

Abstract

Objective

To review our current understanding of the molecular genetic events involved in the development of epithelial ovarian cancers.

Methods

Mllecular biologic techniques have been used to examine the role of growth-stimulatory genes (oncogenes) and -inhibitory genes (tumor suppressors) in ovarian cancer.

Results

A number of different peptide growth factors and their receptors are expressed by normal and malignant ovarian epithelial cells. Howveer, the role, if any, of growth factors in ovarian carcinogenesis or maintenance of the transformed phenotype remains unknown. Amplification and overexpression of the HER-2/neu and c-myc oncogenes occur in a significant fraction of epithelial ovarian cancers (20–30%). Overexpression ofHER-2/neu has correlated with poor survival in some studies, whereas c-myc ampiification is more common in serous cancers. Mttation of the K-ras oncogene frequently occurs in borderline ovarian tumors, but is less in invasive epithelial ovarian cancers. Mttation ofthep53 tumor suppressor gene occurs in approximately half of advanced (stage III/IV) ovarian cancers and in 15% of early (stage IA/IB) cases. Most recently, preliminary studies have focused on the role of other tumor suppressor genes, cyclins, WAF1, and DNA mismatch repair genes.

Conclusion

An understanding of the molecular events involved in the pathogenesis of epithelial ovarian cancer is beginning to evolve. Improvements in early diagnosis, treatment, and prevention of this deadly disease are dependent on further progress in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bishop JM. Molecular themes in oncogenesis. Cell 1991;64:235–48.

    Article  CAS  PubMed  Google Scholar 

  2. Levine AJ. The tumor suppressor genes. Annu Rev Biochem 1993;62:623–51.

    Article  CAS  PubMed  Google Scholar 

  3. Weinberg RA. Tumor suppressor genes. Science 1992;254:1138–46.

    Article  Google Scholar 

  4. Bauknecht T, Kiechle M, Bauer G, Siebers JW. Characterization of growth factors in human ovarian carcinomas. Cancer Res 1986;46:2614–8.

    CAS  PubMed  Google Scholar 

  5. Kommoss F, Wintzer HO, Von Kleist S et al. In situ distribution of transforming growth factor-a in normal human tissues and in malignant tumours of the ovary. J Pathol 1990;162:223–30.

    Article  CAS  PubMed  Google Scholar 

  6. Mrrishige K, Kurachi H, Amemiya K, et al. Evidence for the involvement of transforming growth factor-a and epidermal growth factor receptor autocrine growth mechanism in primary human ovarian cancers in vitro. Cancer Res 1991;51:5322–8.

    Google Scholar 

  7. Rodriguez GC, Berchuck A, Wiitaker RS, Schlossman D, Clarke-Pearson DL, Bast RC Jr. Epidermal growth factor receptor expression in normal ovarian epithelium and ovarian cancer. II. Relationship between receptor expression and response to epidermal growth factor. Am J Osstet Gynecol 1991;164:745–50.

    Article  CAS  Google Scholar 

  8. Stromberg K, Collins TJ, Gordon AW, Jackson CL, Johnson GR. Transforming growth factor-α acts as an autocrine growth factor in ovarian carcinoma cell lines. Cancer Res 1992;52:341–7.

    CAS  PubMed  Google Scholar 

  9. Yee D, Mrrales FR, Hamilton TC, Von Hoff DD. Expression of insulin-like growth factor I, its binding proteins, and its receptor in ovarian cancer. Cancer Res 1991;51:5107–12.

    CAS  PubMed  Google Scholar 

  10. Sariban E, Sitaras NM, Antoniades HN, Kufe DW, Pan-tazis P. Expression of platelet-derived growth factor (PDGF)rrelated transcripts and synthesis of biologically active PDGF-hke proteins by human malignant epithelial cell lines. J Clin Invest 1988;82:1157–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Berchuck A, Olt GJ, Everitt L, Soisson AP, Bast RC Jr, Boyer CM. The role of peptide growth factors in epithelial ovarian cancer. Obstet Gynecol 1990;75:255–62.

    CAS  PubMed  Google Scholar 

  12. Henrikson R, Funa K, Wilander E, Backstrom T, Ridderheim M, Oberg K. Expression and prognostic significance of platelet-derived growth factor and its receptors in epithelial ovarian neoplasms. Cancer Res 1993;53:4550–4.

    Google Scholar 

  13. Di Blasio AM, Cremononesi L, Vigano P, et al. Basic fibroblast growth factor and its receptor messenger ribonucleic acids are expressed in human ovarian epithelial neoplasms. Am J Obstet Gynecol 1993;169:1517–23.

    Article  PubMed  Google Scholar 

  14. Ramakrishnan S, Xu FJ, Brandt SJ, Niedel JE, Bast RC Jr, Brown EL. Conttitutive production of macrophage colony-stimulating factor by human cell lines. J Clin Invest 1989;83:921–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kacinski BM, Stanley ER, Carter D, et al. Circulating levels of CSF-1 (M-CSF) a lymphohematopoietic cytokine may be a useful marker of disease status in patients with malignant ovarian neoplasms. Int J Radiat Oncol Biol Phys 1989;17:159–64.

    Article  CAS  PubMed  Google Scholar 

  16. Kacinski BM, Carter D, Mittal K, et al. Ovarian adenocarcinomas expressfms-complementary transcripts and fms antigen, often with coexpression of CSF-1. Am J Pathol 1990;137:135–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu S, Rodabaugh K, Martinez-Maza O, et al. Stimulation of ovarian tumor cell proliferation with monocyte products including interleukin-1, interleukin-6 and tumor necrosis factor-α. Am J Obstet Gynecol 1992;166:997–1007.

    Article  CAS  PubMed  Google Scholar 

  18. Wu S, Boyer CM, Whitaker RS, et al. Tumor necrosis factor-α an an autocrine and paracrine growth factor for ovarian cancer: Monokine induction of tumor cell proliferation and tumor necrosis factor-α expression. Cancer Res 1993;53:1939–44.

    CAS  PubMed  Google Scholar 

  19. Naylor SM, Stamp GWH, Foulkes WD, Eccles D, Balkwill FR. Tumor necrosis factor and its receptors in human ovarian cancer. J Clin Invest 1993;91:2194–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mills GB, May C, Hill M, Campeell S, Shaw P, Marks A. Ascitic fluid from human ovarian cancer patients contains growth factors necessary for intraperitoneal growth of human ovarian adenocarcinoma cells. J Clin Invest 1990;86:851–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Siemans CH, Auersperg N. Serial propagation of human ovarian surface epithelium in culture. J Cell Physiol 1991;134:347–56.

    Article  Google Scholar 

  22. Lidor YJ, Xu FJ, Martinez-Maza O, et al. Conttitutive production of macrophage colony stimulating factor and interleukin-6 by human ovarian surface epithelial cells. Exp Cell Res 1993;207:332–9.

    Article  CAS  PubMed  Google Scholar 

  23. Ziltener HJ, Maines-Bandiera S, Schrader JW, Auersperg N. Secretion of bioactive interleukin-1, interleukin-6 and colony-stimulating factors by human ovarian surface epithelium. Biol Reprod 1993;49:635–41.

    Article  CAS  PubMed  Google Scholar 

  24. Cantley LC, Auger KR, Carpenter C, et al. Oncogenes and signal transduction. Cell 1991;64:281–302.

    Article  CAS  PubMed  Google Scholar 

  25. Cooper JM. Oncogenes. Boston: Jones and Battlett, 1990.

    Google Scholar 

  26. Wahl MI, Nishibe S, Kim JW, Kim H, Rhee SG, Carpenter G. Identification of two epidermal growth factor-sensitive tyrosine phosphorylation sites of phosphohpase C-gamma in intact HSC-1 cells. J Biol Chem 1990;265:3944–8.

    CAS  PubMed  Google Scholar 

  27. Eagan SE, Giddings BW, Brooks MW, Buday L, Sizeland AM, Weinberg RA. Association of Sos ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature 1993;363:45–51.

    Article  Google Scholar 

  28. Berchuck A, Rodriguez GC, Kamel A, et al. Epidermal growth factor receptor expression in normal ovarian epithelium and ovarian cancer: I. Correlation of receptor expression with prognostic factors in patients with ovarian cancer. Am J Obstet Gynecol 1991;164:669–74.

    Article  CAS  PubMed  Google Scholar 

  29. Sainsbury JR, Farndon JR, Needham GK, Malcolm AJ, Harris AL. Epidermal-growth-factor receptor status as predictor of early recurrence of and death from breast cancer. Lancet 1987;i:1398–402.

  30. Kohler M, Janz I, Wntzer HO, Wagner E, Bauknecht T. The expression of EGF receptors, EGF-like factors and c-myc in ovarian and cervical carcinomas and their potential clinical significance. Anticancer Res 1989;9:1537–47.

    CAS  PubMed  Google Scholar 

  31. Slamon DJ, Godolphin W, Jones LA, et al. Studies of HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989;244:707–12.

    Article  CAS  PubMed  Google Scholar 

  32. Berchuck A, Kamel A, Whitaker R, et al. Overexpression of HER-2/new is associated with poor survival in advanced epithelial ovarian cancer. Cancer Res 1990;50:4087–91.

    CAS  PubMed  Google Scholar 

  33. Rubin SC, Finstad CL, Wong GY, Almadrones L, Plante M, Lloyd KO. Prognostic significance of HER-2/neu expression in advanced ovarian cancer. Am J Obstet Gynecol 1993;168:162–9.

    Article  CAS  PubMed  Google Scholar 

  34. Kacinski BM, Mayer AG, King BL, Carter D, Chambers S. Neu protein overexpression in benign, borderline, and malignant ovarian neoplasms. Gynecol Oncol 1992;44:245–53.

    Article  CAS  PubMed  Google Scholar 

  35. Wiener JR, Hurteau J, Kerns BJ, et al. Overexpression of tyrosine phosphatase PTP1B is associated with human ovarian carcinomas. AmJ Obstet Gynecol 1994;170:1177–83.

    Article  CAS  Google Scholar 

  36. Cheng JQ, Godwin AK, Bellacosa A, et al. AKT2, a putative oncogene encoding a member of a subfamily of pro-tein-serine/threonine kinases, is amplified in human ovarian carcinomas. Proc Natl Acad Sci USA 1992;89:9267–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Enomoto T, Inoue M, Perantoni AO, Terakawa IN, Tanizawa O, Rice JM. K-ras activation in neoplasms of the human female reproductive tract. Cancer Res 1990;50:6139–45.

    CAS  PubMed  Google Scholar 

  38. Feig LA, Bast RC Jr, Knapp RC, Cooper GM. Somatic activation of rasK gene in a human ovarian carcinoma. Science 1984;223:698–701.

    Article  CAS  PubMed  Google Scholar 

  39. Haas M, Isakov J, Howell SB. Evidence against ras activation in human ovarian carcinomas. Mol Biol Med 1987;4:265–75.

    CAS  PubMed  Google Scholar 

  40. Tenenello MG, Ebina M, Linnoila RI, et al. p53 and ki-ras gene mutations in epithelial ovarian neoplasms. Cancer Res 1993;53:3103–8.

    Google Scholar 

  41. Mok SCH, Bell DA, Knapp RC, et al. Mutation of K-ras protooncogene in human ovarian epithelial tumors of borderline malignancy. Cancer Res 1993;53:1489–92.

    CAS  PubMed  Google Scholar 

  42. Lyons J, Landis CA, Harsh G, et al. Two G protein oncogenes in human endocrine tumors. Science 1990;245:655–9.

    Article  Google Scholar 

  43. Bourne HR, Sanders DA, McCormick F. The GTPase su-perfamily: A conserved switch for diverse cell functions. Nature 1990;348:125–32.

    Article  CAS  PubMed  Google Scholar 

  44. Baker VV, Borst MP, Dixon D, Hatch KD, Shingleton HM, Miller D. c-myc amplification in ovarian cancer. Gynecol Oncol 1990;38:340–2.

    Article  CAS  PubMed  Google Scholar 

  45. Zhou DJ, Gonzalez-Cadavid N, Ahuja H, Battifora H, Moore GE, Cline MJ. A unique pattern of proto-oncogene abnormalities in ovarian adenocarcinomas. Cancer 1988;62:1573–6.

    Article  CAS  PubMed  Google Scholar 

  46. Serova DM. Amplification of c-myc proto-oncogene in primary tumors, metastases and blood leukocytes of patients with ovarian cancer. Eksp Onkol 1987;9:25–7.

    CAS  PubMed  Google Scholar 

  47. Sasano H, Garrett C, Wilkinson D, Silverberg S, Comerford J, Hyde J. Protooncogene amllification and tumor ploidy in human ovarian neoplasms. Hum Pathol 1990;21:382–91.

    Article  CAS  PubMed  Google Scholar 

  48. Berns EMJJ, Klijn JGM, Henzen-Logmans SC, Rodenburg CJ, vander Burg MEL, Foekens JA. Receptors for hormones and growth factors (onco)-gene amllification in human ovarian cancer. Int J Cancer 1992;52:218–24.

    Article  CAS  PubMed  Google Scholar 

  49. Tashiro H, Niyazaki K, Okamura H, Iwai A, Fukumoto M. c-myc overexpression in human primary ovarian tumors: Its relevance to tumor progression. Int J Cancer 1992;50:828–33.

    Article  CAS  PubMed  Google Scholar 

  50. Marx J. Research How cells cycle towards cancer. Science 1994;263:319–21.

    Article  CAS  PubMed  Google Scholar 

  51. Roberts AB, Sporn MB. The transforming growth factor-betas. In: Sporn MB, Roberts AB, eds. Peptide growth factors and their receptors. I. Berlin: Springer-Verlag, 1990: 419–72.

    Chapter  Google Scholar 

  52. Moses HL, Yang HY, Pietenpol JA. TGF-beta stimulation and inhibition of cell proliferation: New mechanistic insights. Cell 1990;63:245–7.

    Article  CAS  PubMed  Google Scholar 

  53. Msssague J. Receptors for the TGF-beta family. Cell 1992;69:1067–70.

    Article  Google Scholar 

  54. Berchuck A, Rodriguez GC, Olt GJ, et al. Regulation of growth of normal ovarian epithelial cells and ovarian cancer cell lines by transforming growth factor-ß. Am J Obstet Gynecol 1992;166:676–84.

    Article  CAS  PubMed  Google Scholar 

  55. Marth C, Lang T, Koza A, Mayer I, Daxenbichler G. Transforming growth factor-beta and ovarian carcinoma cells: Regulation of proliferation and surface antigen expression. Cancer Lett 1990;51:221–5.

    Article  CAS  PubMed  Google Scholar 

  56. Bartlett JMS, Rabiasz GJ, Scott WN, Langdon SP, Smyth JF, Miller WR. Transforming growth factor-ß mRNA expression in growth control of human ovarian carcinoma cells. Br J Cancer 1992;65:655–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jozan S, Guerrin M, Mazars P, et al. Transforming growth factor-β-1 (TGF-β-1) inhibits growth of a human ovarian cancer cell line (OVCCR-1) and is expressed in human ovarian tumors. Int J Cancer 1992;52:766–70.

    Article  CAS  PubMed  Google Scholar 

  58. Zhou LlLeung BS. Growth regulation of ovarian cancer cells by epidermal growth factor and transforming growth factors-α and β-1. Biochem Biophysica Acta 1992;1080:130–6.

    Google Scholar 

  59. Hurteau J, Rodriguez GC, Whitaker RS, Shain S, Bast RC Jr, Berchuck A. Effect of transforming growth factor-β on proliferation of human ovarian cancer cells obtained from ascites. Cancer 1994;74:93–9.

    Article  CAS  PubMed  Google Scholar 

  60. Sasano H, Comerford J, Silverberg SG, Garrett CT. An analysis of abnormalities of the retinoblastoma gene in human ovarian and endometrial carcinoma. Cancer 1990;66:2150–4.

    Article  CAS  PubMed  Google Scholar 

  61. Coppes MJ, Ye Y, Rackley R, et al. Analysis of WT1 in granulosa cell and other sex cord-stromal tumors. Cancer Res 1993;53:2712–4.

    CAS  PubMed  Google Scholar 

  62. Pelletier J, Breuning W, Kashtan CE, et al. Germline mutations in the Wilms tumor suppressor gene are associated with abnormal urogenital development in Denys-Drash syndrome. Cell 1991;67:437–47.

    Article  CAS  PubMed  Google Scholar 

  63. Kamb A, Gruis NA, Weaver-Feldhaus J, et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science 1994;264:436–40.

    Article  CAS  PubMed  Google Scholar 

  64. Levine AJ, Momand J, Finlay CA. The p53 tumour suppressor gene. Nature 1991;351:453–6.

    Article  CAS  PubMed  Google Scholar 

  65. Hollstein M, Sidransky D, Vogllstein B, Harris CC. p53 mutations in human cancers. Science 1991;253:49–53.

    Article  CAS  PubMed  Google Scholar 

  66. El-Deiry WS, Tokino T, Velculescu VE, et al. WAF1, a potential mediator of p53 tumor suppression. Cell 1993;75:817–25.

    Article  CAS  PubMed  Google Scholar 

  67. Kuerbitz SJ, Plunkett BS, Walsh WV, Kastan MB. Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci USA 1992;89:7491–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Marks JR, Davidoff AM, Kerns B, et al. Overexpression and mutation of p53 in epithelial ovarian cancer. Cancer Res 1991;51:2979–84.

    CAS  PubMed  Google Scholar 

  69. Kohler MF, Kerns BJ, Humphrey PA, Marks JR, Bast RC, Berchuck A. Mutation and overexpression of p53 in early-stage epithelial ovarian cancer. Obstet Gynecol 1993;81:643–50.

    CAS  PubMed  Google Scholar 

  70. Berchuck A, Kohler MF, Hopkins MP, Clarke-Pearson DL, Humphrey PA, Bast RC. Overexpression of the p53 tumor suppressor gene is not a feature of benign and early stage borderline epithelial ovarian tumors. Gynecol Oncol 1994;52:232–6.

    Article  CAS  PubMed  Google Scholar 

  71. Caron de Fromentel C, Soussi T. TP53 tumor suppressor gene: A model for investigating human mutagenesis. Genes Chromosomes Cancer 1992;4:1–15.

    Article  CAS  PubMed  Google Scholar 

  72. Kohler MF, Marks JR, Wiseman RW, et al. Spectrum of mutation and frequency of allelic deletion of the p53 gene in ovarian cancer. J Natl Cancer Inst 1993;85:1513–9.

    Article  CAS  PubMed  Google Scholar 

  73. Mok CH, Tsao SW, Knapp RC, Fishbaugh PM, Lau CC. Unifocal origin of advanced human epithelial ovarian cancers. Cancer Res 1992;52:5119–22.

    CAS  PubMed  Google Scholar 

  74. Okamato A, Sameshima Y, Yokoyama S, et al. Frequent allelic losses and mutations of the p53 gene in human ovarian cancer. Cancer Res 1991;51:5171–6.

    Google Scholar 

  75. Kupryjanczyk J, Thor AD, Beauchamp R, et al. p53 mutations and protein accumulation in human ovarian cancer. Proc Natl Acad Sci USA 1993;90:4961–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Milner BH, Allan LA, Eccles DM, et al. p53 mutation is a common genetic event in ovarian carcinoma. Cancer Res 1993;53:2128–32.

    CAS  PubMed  Google Scholar 

  77. Jacobs IJ, Kohler M, Wiseman R, et al. Clonal origin of epithelial ovarian cancer: Analysis by loss of heterozygosity, p53 mutation and X-chromosome inactivation. J Natl Cancer Inst 1992;84:1793–8.

    Article  CAS  PubMed  Google Scholar 

  78. Jones PA, Buckley JD, Henderson BE, Ross RK, Pike MC. From gene to carcinogen: A rapidly evolving field in molecular epidemiology. Cancer Res 1991;51:3617–20.

    CAS  PubMed  Google Scholar 

  79. Harlap S. The epidemiology of ovarian In: Mark-man M, Hoskins WJ, eds. Cancer of the ovary. New York: Raven Press, 1993:79–93.

    Google Scholar 

  80. Ames BN, Gold LS. Too many rodent carcinogens: Mito-genesis increases mutagenesis. Science 1990;249:970–1.

    Article  CAS  PubMed  Google Scholar 

  81. Whittemore AS, Harris R, Itnyre J. Characteristics relating to ovarian cancer risk. Collaborative analysis of twelve US case-control studies. II. Invasive epithelial ovarian cancers in white women. Am J Epidemiol 1992;136:1184–203.

    Article  CAS  PubMed  Google Scholar 

  82. Buller RE, Anderson B, Conner JP, Robinson R. Familial ovarian cancer. Gynecol Oncol 1993;51:160–6.

    Article  CAS  PubMed  Google Scholar 

  83. Narod SA, Feunteun J, Lynch HT, et al. Famllial breast-ovarian cancer locus on chromosome 17q12–q23. Lancet 1991;338:82–3.

    Article  CAS  PubMed  Google Scholar 

  84. Jolly KW, Malkin D, Douglass EC, Brown TF, Sinclair AE, Look AT. Splice-site mutation of the p53 gene in a family with hereditary breast-ovarian cancer. Oncogene 1994;9:97–102.

    CAS  PubMed  Google Scholar 

  85. Service RF. Research news: Stalking the start of colon cancer. Science 1994;263:1559–60.

    Article  CAS  PubMed  Google Scholar 

  86. Risinger JI, Berchuck A, Kohler MF, Watson P, Lynch HT, Boyd J. Genetic instability of microsatellites in endometrial carcinoma. Cancer Res 1993;53:5100–3.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by grant CA55640 from the National Cancer Institute.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berchuck, A., Elbendary, A., Havrilesky, L. et al. Pathogenesis of Ovarian Cancers. Reprod. Sci. 1, 181–190 (1994). https://doi.org/10.1177/107155769400100302

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/107155769400100302

Key words

Navigation