Skip to main content

Advertisement

Log in

Lactosylceramide-Induced Apoptosis in Primary Amnion Cells and Amnion-Derived WISH Cells

  • Original Article
  • Published:
The Journal of the Society for Gynecologic Investigation: JSGI Aims and scope Submit manuscript

Abstract

Objective

Amnion apoptosis is part of a programmed process of fetal membrane remodeling leading to weakening and rupture. The apoptotis agent lactosylceramide is elevated in amniotic fluid of premature infants with rupture of membranes. We have shown that apoptosis in WISH cells, induced by staurosporine, cycloheximide, or actionomycin D, can be blocked by cyclooxygenase inhibitors, suggesting a relationship between prostaglandin production and apoptosis. Cyclic adenosine monophosphate (cAMP) is known to inhibit prostaglandin release in amnion and WASH cells. This study was undertaken to determine the apoptotic potential of lactosylceramide and the effect of cyclooxygenase inhibitors and cAMP activators on lactosylceramida-induced apoptosis in primary amnion and WISH cells.

Methods

Primary amnion cells and WISH cells were incubated with lactosylceramide to determine apoptosis and prostaglandin E2 (PGE2) release. Apoptosis was confirmed b agarose gel electrophoretic DNA fragmentation analysis, nuclear matrix protein (NMP), and uncleosome enzyme-linked immunosorbent assay. In some studied, cells were preincubated with cyclooxygenase inhibitors or cAMP activators.

Results

Lactosylceramide induced a 20-fold increase in NMP (measure of cell death) in both cell types. Apoptosis was confirmed by the studied listed in methods. Lactosylceramide increased PGE2 release in parallel with apoptosis. Cyclooxygenase inhibitors as well as cAMP activators inhibited both PGE2 release and apoptosis.

Conclusions

Lactosylceramide-induced apoptosis in both amnion and WISH cells. Parallel PGE2 release was demonstrated with apoptosis. Cyclooxygenase inhibitors and cAMP activators blocked both processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mead PB. Management of the patient with premature rupture of the membranes. Clin Perinatol 1980;7:243–55.

    Article  CAS  PubMed  Google Scholar 

  2. Garite TJ. Premature rupture of the membranes. In Creasy RK, Resnick R, eds. Maternal-fetal medicine. Philadelphia: J.B. Saunders, 1994:625–38.

  3. Fortunato SJ, Menon MS, Bryant C, Lombardi SJ. Programmed cell death (apoptosis) as a possible pathway to metalloproteinase activation and fetal membrane degradation in premature rupture of membranes. Am J Obstet Gynecol 2000;182:1468–76.

    Article  CAS  PubMed  Google Scholar 

  4. Parry S, Strauss JF. Premature rupture of the fetal membranes. N Engl J Med 1998;338:663–70.

    Article  CAS  PubMed  Google Scholar 

  5. Lei H, Furth EE, Kalluri R, et al. A program of cell death and extracellular matrix degradation is activated in the amnion before the onset of labor. J Clin Invest 1996;98:1971–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lei H, Kalluri R, Furth EE, Baker AH, Strauss JF. Rat amnion type IV collagen composition and metabolism: Implications for membrane breakdown. Biol Reprod 1999;60:176–82.

    Article  CAS  PubMed  Google Scholar 

  7. Paavola LG, Furth EE, Delgado CO, et al. Striking changes in the rat fetal membranes precede parturition. Biol Reprod 1995;53:321–38.

    Article  CAS  PubMed  Google Scholar 

  8. Malak TM, Bell SC. Structural characteristics of term human membranes: A novel zone of extreme morphological alteration within the rupture site. Br J Obstet Gynaecol 1994;101:375–86.

    Article  CAS  PubMed  Google Scholar 

  9. McLaren J, Malak TM, Bell SC. Structural characteristics of term human fetal membranes prior to labor: Identification of an area of altered morphology overlying the cervix. Hum Reprod 1999;14:237–41.

    Article  CAS  PubMed  Google Scholar 

  10. Okazaki T, Casey ML, Okita JR, McDonald PC. Initiation of human parturition. XII. Biosynthesis and metabolism of prostaglandins in human fetal membranes and decidua. Am J Obstet Gynecol 1981;139:373–8.

    Article  CAS  PubMed  Google Scholar 

  11. Lundgren DW, Moore RM, Collins PL, Moore JJ. Hypotonic stress increases cyclooxygenase-2 expression and prostaglandin release from amnion-derived WISH cells. J Biol Chem 1997;272:20118–24.

    Article  CAS  PubMed  Google Scholar 

  12. Gibb W. The role of prostaglandins in human parturition. Ann Med 1998;30:235–41.

    Article  CAS  PubMed  Google Scholar 

  13. Kniss DA. Cyclooxygenases in reproductive medicine and biology. J Soc Gynecol Investig 1999;6:285–92.

    Article  CAS  PubMed  Google Scholar 

  14. Ahn SG, Jeong SY, Rhim H, Kim IK. The role of c-Myc and heat shock protein 70 in human hepatocarcinoma Hep3B cells during apoptosis induced by prostaglandin A2/Delta 12-prosta-glandin J2. Biochim Biophys Acta 1998;1448:115–25.

    Article  CAS  PubMed  Google Scholar 

  15. Moore RM, Lundgren DW, Moore JJ. Cyclooxygenase inhibitors decrease apoptosis initiated by actinomycin D, cycloheximide, and staurosporine in amnion-derived WISH cells. J Soc Gynecol Investig 1999;6:245–51.

    Article  CAS  PubMed  Google Scholar 

  16. Subbaramaiah K, Chung WJ, Dannenberg AJ. Ceramide regulates the transcription of cyclooxygenase-2. J Biol Chem 1998;273:32943–9.

    Article  CAS  PubMed  Google Scholar 

  17. Hallman M, Bry K, Pitkanen O. Ceramide lactoside in amniotic fluid: High concentration in chorioamnionitis and preterm labor. Am J Obstet Gynecol 1989;161:313–8.

    Article  CAS  PubMed  Google Scholar 

  18. Okita JR, Sagawa N, Casey ML, Snyder JM. A comparison of human amnion tissue and amnion cells in primary culture by morphological and biochemical criteria. In Vitro 1983;19:117–26.

    Article  CAS  PubMed  Google Scholar 

  19. Miller T, Beausang LA, Meneghini M, Lidgard G. Death induced changes to the nuclear matrix: The use of anti-nuclear matrix antibodies to study agents of apoptosis. Biotechniques 1993;15:1042–7.

    CAS  PubMed  Google Scholar 

  20. Hannun YA. The sphingomyelin cycle and the second messenger function of ceramide. J Biol Chem 1994;269:3125–8.

    CAS  PubMed  Google Scholar 

  21. Speigel SD, Foster D, Kolesnick R. Signal transduction through lipid second messengers. Curr Opin Cell Biol 1996;8:159–67.

    Article  Google Scholar 

  22. Colell A, Garcia-Ruiz C, Roman J, Ballesta A, Fernandez-Checa JC. Ganglioside GD3 enhances apoptosis by supressing the nuclear factor-KB-dependent survival pathway. FASEB J 2001;15:1068–70.

    Article  CAS  PubMed  Google Scholar 

  23. Moore JJ, Moore RM, Collins PL. Protein kinase A activators inhibit agonist induced prostaglandin production in human amnion. Prostaglandins Leukotrienes Essential Fatty Acids 1993;48:355–61.

    Article  CAS  PubMed  Google Scholar 

  24. Su HC, Fertel RH, Kniss DA. Catecholamines modulate epidermal growth factor induced prostaglandin E2 production in amnion-like (WISH) cells by means of cyclic adenosine monophosphate dependent pathway. Am J Obstet Gynecol 1992;66:236–41.

    Article  Google Scholar 

  25. Gu C, Ma YC, Benjamin J, Littman D, Chao MV, Huang XY. Apoptotic signaling through the b-adrenergic receptor. J Biol Chem 2000;275:20726–33.

    Article  CAS  PubMed  Google Scholar 

  26. Saeki K, You A, Suzukii E, Yazaki Y, Takaku F. Aberrant expression of cAMP-response-element-binding protein (‘CREB’) induces apoptosis. Biochem J 1999;249–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li J, Yang S, Billiar TR. Cyclic nucleotides suppress tumor necrosis factor a-mediated apoptosis by inhibiting caspase activation and cytochrome c release in primary hepatocytes via a mechanism independent of Akt activation. J Biol Chem 2000;275:13026–34.

    Article  CAS  PubMed  Google Scholar 

  28. Zwain IH, Amato P. cAMP induced apoptosis in granulosa cells is associated with up-regulation of P53 and bax and down-regulation of clustrin. Endocr Res 2001;27:233–49.

    Article  CAS  PubMed  Google Scholar 

  29. Sasson R, Tajima K, Amsterdam A. Glucocorticoids protect against apoptosis induced by serum deprivation, cyclic adenosine 3’5’-monophosphate and p53 activation in immortalized human granulosa cells: Involvement of Bcl-2. Endocrinology 2001;142:802–11.

    Article  CAS  PubMed  Google Scholar 

  30. Kirtikara K, Laulederkind SJF, Raghow R, Kanekura T, Ballou LR. An accessory role for ceramide in interleukin lb induced prostaglandin synthesis. Mol Cell Biochem 1998;181:41–8.

    Article  CAS  PubMed  Google Scholar 

  31. Kondo M, Oya-Ito T, Kumagai T, Osawa T, Uchida K. Cyclo-pentenone prostaglandins as potential inducers of intracellular oxidative stress. J Biol Chem 2001;276:12076–83.

    Article  CAS  PubMed  Google Scholar 

  32. Straus DS, Pascual G, Li M, et al. 15-Deoxy-4112,14-prostaglandin J2 inhibits multiple steps in the NF-54 B signaling pathway. Proc Natl Acad Sci U S A 2000;97:4844–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hla T, Bishop-Bailey D. Endothelial cell apoptosis induced by the peroxisome proliferator-activated receptor (PPAR) ligand 15-deoxy-4112,14-prostaglandin J2.J Biol Chem 1999;274:17042–8.

  34. Baggetta G, Corasaniti MT, Paoletti AM, et al. HIV-1 gp 120-induced apoptosis in the rat neocortex involves enhanced expression of cyclooxygenase type 2 (COX-2). Biochem Biophys Res Commun 1998;244:819–24.

    Article  Google Scholar 

  35. Tocco G, Freire-Moar J, Schreiber SS, Sakhi SH, Aisen PS, Pasinetti GM. Maturational regulation and regional induction of cyclooxygenase-2 in the rat brain: Implications for Alzheimer’s disease. Exp Neurol 1997;144:339–49.

    Article  CAS  PubMed  Google Scholar 

  36. Ho L, Osaka H, Aisen PS, Pasinetti GM. Induction of cyclooxygenase-2 but not COX-1 gene expression in apoptotic cell death. J Neuroimmunol 1998;89:142–9.

    Article  CAS  PubMed  Google Scholar 

  37. Chang HC, Weng CF. Cyclooxygenase-2 level and culture conditions influence NS398 induced apoptosis and caspase activation in lung cancer cells. Oncol Rep 2001;8:1321–5.

    CAS  PubMed  Google Scholar 

  38. Li M, Wu X, Xu XC. Induction of apoptosis by cyclooxygenase-2 inhibitor NS398 through a cytochrome C dependent pathway in esophageal cancer cells. Int J Cancer 2001;93:218–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Moore MD.

Additional information

Supported by NICHD grant R01 HD39159 to JJM.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, R.M., Lundgren, D.W., Silver, R.J. et al. Lactosylceramide-Induced Apoptosis in Primary Amnion Cells and Amnion-Derived WISH Cells. Reprod. Sci. 9, 282–289 (2002). https://doi.org/10.1177/107155760200900505

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/107155760200900505

Key words

Navigation