Skip to main content

Advertisement

Log in

The Embryonic-Like Properties of Aggressive Human Tumor Cells

  • Review Article
  • Published:
The Journal of the Society for Gynecologic Investigation: JSGI Aims and scope Submit manuscript

Abstract

During embryogenesis, the formation and remodeling of primary vascular networks occur by vasculogenesis and angiogenesis. Recently, the term “vasculogenic mimicry” was introduced by our laboratory and collaborators to reflect the embryonic-like ability of aggressive, but not nonaggressive, tumor cells to form a pattern of vasculogenic-like networks in three-dimensional culture, with concomitant expression of vascular-associated cell markers. We reviewed research on the ability of invasive ovarian carcinoma cells to engage in molecular vasculogenic mimicry reflected by their plasticity. In addition, we reviewed in vivo evidence regarding the presence of tumor cell-lined vasculature in aggressive ovarian carcinoma and other cancers, which may serve as the correlate to in vitro vsculogenic mimicry. These results may offer new insights and molecular markers for consideration in ovarian cancer diagnosis and treatment strategies based on molecular vascular mimicry by aggressive tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Folkman J. What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 1990;82:4–6.

    Article  CAS  PubMed  Google Scholar 

  2. Maniotis AJ, Folberg R, Hess A, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: Vasculogenic mimicry. Am J Pathol 1999;155:739–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bittner M, Meltzer P, Chen P, et al. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 2000;406:536–40.

    Article  CAS  PubMed  Google Scholar 

  4. Drake CJ, Hungerford JE, Little CD. Morphogenesis of the first blood vessels. Ann N Y Acad Sci 1998;857:155–79.

    Article  CAS  PubMed  Google Scholar 

  5. Iarygin NE, Korablev AV. The loop-like growth of the vessels and the embryonic morphogenesis of the human intraorganic circulatory system. Ontogenez 1996;27:305–13.

    CAS  PubMed  Google Scholar 

  6. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med 2000;6:389–95.

    Article  CAS  PubMed  Google Scholar 

  7. Noden DM. Origins and assembly of avian embryonic blood vessels. Ann N Y Acad Sci 1990;588:236–49.

    Article  CAS  PubMed  Google Scholar 

  8. Noden DM. Interactions and fates of avian craniofacial mesenchyme. Development 1988;103:121–40.

    PubMed  Google Scholar 

  9. Pardanaud L, Altmann C, Kitos P, Dieterlen-Lievre F, Buck CA. Vasculogenesis in the early quail blastodisc as studied with a monoclonal antibody recognizing endothelial cells. Development 1987;100:339–49.

    CAS  PubMed  Google Scholar 

  10. Vernon RB, Sage EH. Between molecules and morphology extracellular matrix and creation of vascular form. Am J Pathol 1995;147:873–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Djonov V, Schmid M, Tschanz SA, Burri PH. Intussusceptive angiogenesis: Its role in embryonic vascular network formation. Circ Res 2000;86:286–92.

    Article  CAS  PubMed  Google Scholar 

  12. Carmeliet P, Ferreira V, Breier G, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996;380:435–9.

    Article  CAS  PubMed  Google Scholar 

  13. Breier G, Clauss M, Risau W. Coordinate expression of vascular endothelial growth factor receptor–1 (flt-1) and its ligand suggests a paracrine regulation of murine vascular development. Developmental Dynamics 1995;204:228–39.

    Article  CAS  PubMed  Google Scholar 

  14. Shalaby F, Ho J, Stanford WL, et al. A requirement for Flkl in primitive and definitive hematopoiesis and vasculogenesis. Cell 1997;89:981–90.

    Article  CAS  PubMed  Google Scholar 

  15. Shalaby F, Rossant J, Yamaguchi TP, et al. Failure of blood-island formation and vasculogenesis in Flk-1 deficient mice. Nature 1995;376:62–6.

    Article  CAS  PubMed  Google Scholar 

  16. Newman PJ. The biology of PECAM-1. J Clin Invest 1997;99:3–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pinter E, Barreuther M, Lu T, Imhof BA, Madri JA. Platelet-endothelial cell adhesion molecule-1 (PECAM-1/CD31) tyrosine phosphorylation state changes during vasculogenesis in the murine conceptus. Am J Pathol 1997;150:1523–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim CS, Wang T, Madri JA. Platelet endothelial cell adhesion molecule-1 expression modulates endothelial cell migration in vitro. Lab Invest 1998;78:583–90.

    CAS  PubMed  Google Scholar 

  19. Wood HB, May G, Healy L, Enver T, Morriss-Kay GM. CD34 expression patterns during early mouse development are related to modes of blood vessel formation and reveal additional sites of hematopoiesis. Blood 1997;90:2300–11.

    Article  CAS  PubMed  Google Scholar 

  20. Li DY, Sorensen LK, Brooke BS, et al. Defective angiogenesis in mice lacking endoglin. Science 1999;284:1534–7.

    Article  CAS  PubMed  Google Scholar 

  21. Drake CJ, Cheresh DA, Little CD. An antagonist of integrin alpha v beta 3 prevents maturation of blood vessels during embryonic neovascularization. J Cell Sci 1995;108:2655–61.

    CAS  PubMed  Google Scholar 

  22. Sato TN, Tozawa Y, Deutsch U, et al. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 1995;376:70–4.

    Article  CAS  PubMed  Google Scholar 

  23. Puri MC, Partanen J, Rossant J, Bernstein A. Interaction of the TEK and TIE receptor tyrosine kinases during cardiovascular development. Development 1999;126:4569–80.

    CAS  PubMed  Google Scholar 

  24. Takakura N, Huang XL, Naruse T, et al. Critical role of the TIE2 endothelial cell receptor in the development of definitive hematopoiesis. Immunity 1998;9:677–86.

    Article  CAS  PubMed  Google Scholar 

  25. Yancopoulos GD, Klagsbrun M, Folkman J. Vasculogenesis, angiogenesis, and growth factors: Ephrins enter the fray at the border. Cell 1998;93:661–4.

    Article  CAS  PubMed  Google Scholar 

  26. Adams RH, Wilkinson GA, Weiss C, et al. Role of ephrinB ligands and EphB receptors in cardiovascular development: Demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev 1999;13:295–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Suri C, Jones PF, Patan S, et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 1996;1171–80.

    Article  CAS  PubMed  Google Scholar 

  28. Carmeliet P, Mackman N, Moons L, et al. Role of tissue factor in embryonic blood vessel development. Nature 1996;383:73–5.

    Article  CAS  PubMed  Google Scholar 

  29. Gendron RL, Tsai FY, Paradis H, Arceci RJ. Induction of embryonic vasculogenesis by bFGF and LIF in vitro and in vivo. Develop Biol 1996;177:332–46.

    Article  CAS  PubMed  Google Scholar 

  30. Hellstrom M, Kal NM, Lindahl P, Abramsson A, Betsholtz C. Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 1999;126:3047–55.

    CAS  PubMed  Google Scholar 

  31. Hendrix MJC, Seftor EA, Kirschmann DA, Seftor REB. Molecular expression of vascular markers by aggressive breast cancer cells. Breast Cancer Res 2000;2:417–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sharma NK, Seftor REB, Seftor EA, Lubaroff DM, Heidger PM, Hendrix MJC. Formation of patterned intratumoral networks in aggressive heterogeneous prostate cancer: Molecular determinants and role of individual populations. Proc Am Assoc Cancer Res 2001;42:110.

    Google Scholar 

  33. Shirakawa K, Tsuda H, Heike Y, et al. Absence of endothelial cells, central necrosis, and fibrosis are associated with aggressive inflammatory breast cancer. Cancer Res 2001;61:445–51.

    CAS  PubMed  Google Scholar 

  34. Greenlee RT, Murray T, Bolden S, Wingo PA. Cancer statistics, 2000. CA A Cancer Journal for Clinicians 2000;50:7–33.

    Article  CAS  PubMed  Google Scholar 

  35. Gasparini G, Bonoldi E, Viale G, et al. Prognostic and predictive value of tumor angiogenesis in ovarian carcinomas. Int J Cancer 1996;69:205–11.

    Article  CAS  PubMed  Google Scholar 

  36. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983;219:983–5.

    Article  CAS  PubMed  Google Scholar 

  37. Paley PJ, Staskus KA, Gebhard K, et al. Vascular endothelial growth factor expression in early stage ovarian carcinoma. Cancer 1997;80:98–106.

    Article  CAS  PubMed  Google Scholar 

  38. Hollingsworth HC, Kohn EC, Steinberg SM, Rothenberg ML, Merino MJ. Tumor angiogenesis in advanced stage ovarian carcinoma. Am J Pathol 1995;147:33–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Alvarez AA, Krigman HR, Whitaker RS, Dodge RK, Rodriguez GC. The prognostic significance of angiogenesis in epithelial ovarian carcinoma. Clin Cancer Res 1999;5:587–91.

    CAS  PubMed  Google Scholar 

  40. Weidner N. Tumoral vascularity as a prognostic factor in cancer patients: The evidence continues to grow. J Pathol 1998;184:119–22.

    Article  CAS  PubMed  Google Scholar 

  41. Fox SB. Tumour angiogenesis and prognosis. Histopathology 1997;30:294–301.

    Article  CAS  PubMed  Google Scholar 

  42. Eberhard A, Kahlert S, Goede V, Hemmerlein B, Plate KH, Augustin HG. Heterogeneity of angiogenesis and blood vessel maturation in human tumors: Implications for antiangiogenic tumor therapies. Cancer Res 2000;60:1388–93.

    CAS  PubMed  Google Scholar 

  43. Orre M, Rogers PAW. VEGF, VEGF-1, and VEGF-2, mi-crovessel density and endothelial cell proliferation in tumors of the ovary. Int J Cancer 1999;84:101–8.

    Article  CAS  PubMed  Google Scholar 

  44. Hendrix MJ, Seftor EA, Seftor RE, Fidler IJ. A simple quantitative assay for studying the invasive potential of high and low human metastatic variants. Cancer Lett 1987;38:137–47.

    Article  CAS  PubMed  Google Scholar 

  45. Sood AK, Seftor EA, Fletcher MS, et al. Molecular determinants of ovarian cancer plasticity. Am J Pathol 2001;158:1279–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Furue M, Okamoto T, Hayashi H, Sato JD, Asashima M, Saito S. Effects of hepatocyte growth factor (HGF) and activin A on the morphogenesis of rat submandibular gland-derived epithelial cells in serum-free collagen gel culture. In Vitro Cell Dev Biol Animal 1999;35:131–5.

    Article  CAS  Google Scholar 

  47. Breast Cancer Progression Working Party. Evidence for novel non-angiogenic pathway in breast-cancer metastasis. Lancet 2000;355:1787–8.

    Article  Google Scholar 

  48. Pezzella F, Pastorino U, Tagliabue E, et al. Non-small-cell lung carcinoma tumor growth without morphological evidence of neo-angiogenesis. Am J Pathol 1997;151:1417–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Timár J, Tóth J. Tumor sinuses—Vascular channels. Pathol Oncol Res 2000;6:122–6.

    Article  Google Scholar 

  50. Folberg R, Hendrix MJC, Maniotis AJ. Vasculogenic mimicry and tumor angiogenesis. Am J Pathol 2000;156:361–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hendrix MJC, Seftor EA, Meltzer PS, et al. Expression and functional significance of VE-cadherin in aggressive human melanoma cells: Role in vasculogenic mimicry. Proc Natl Acad Sci U S A 2001;98:8018–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chang YS, diTomaso E, McDonald DM, Jones R, Jain RK, Munn LL. Mosaic blood vessels in tumors: Frequency of cancer cells in contact with flowing blood. Proc Natl Acad Sci U S A 2000;97:14608–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pepper MS. Lymphangiogenesis and tumor metastasis: Myth or reality? Clin Cancer Res 2001;7:462–8.

    CAS  PubMed  Google Scholar 

  54. Hashizume H, Baluk P, Morikawa S, et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 2000;156:1363–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Barshtein G, Wajnblum D, Yedgar S. Kinetics of linear rouleaux formation studied by visual monitoring of red cell dynamic organization. Biophys J 2000;78:2470–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fabry TL. Mechanism of erythrocyte aggregation and sedimentation. Blood 2000;70:1572–6.

    Article  Google Scholar 

  57. Damsky CH, Fisher SJ. Trophoblast pseudo-vasculogenesis: Faking it with endothelial adhesion receptors. Curr Opin Cell Biol 1998;10:660–6.

    Article  CAS  PubMed  Google Scholar 

  58. Zhou Y, Fisher SJ, Janatpour M, et al. Human cytotrophoblasts adopt a vascular phenotype as they differentiate: A strategy for successful endovascular invasion? J Clin Invest 1997;99:2139–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhou Y, Damsky CH, Fisher SJ. Preeclampsia is associated with failure of human cytotrophoblasts to mimic a vascular adhesion phenotype: One cause of defective endovascular invasion in this syndrome? J Clin Invest 1997;99:2152–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rogers PAW, Lederman F, Taylor N. Endometrial microvascular growth in normal and dysfunctional states. Hum Reprod Update 1998;4:503–8.

    Article  CAS  PubMed  Google Scholar 

  61. Potter CJ, Rurenchall GS, Xu T. Drosophila in cancer research: An expanding role. Trends Genet 2000;16:33–9.

    Article  CAS  PubMed  Google Scholar 

  62. Bissel MJ. Tumor plasticity allows vasculogenic mimicry, a novel form of angiogenic switch. A rose by any other name? Am J Pathol 1999;158:1279–88.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil K. Sood MD.

Additional information

Portions of this work were funded by the Gynecologic Cancer Foundation/National Ovarian Cancer Coalition Ovarian Cancer Research Grant to Anil K. Sood, the Phase II Junior Faculty Award (Reproductive Scientist Development Program) funded by the Burroughs Wellcome Fund to Anil K. Sood, the Kate Daum Research Endowment, and the H. B. Wallace Foundation Award to Mary J. C. Hendrix.

The authors gratefully acknowledge Lynn M. G. Gardner for technical assistance; Paul M. Heidger and the University of Iowa Central Microscopy Core Facility for electron microscopy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sood, A.K., Fletcher, M.S. & Hendrix, M.J.C. The Embryonic-Like Properties of Aggressive Human Tumor Cells. Reprod. Sci. 9, 2–9 (2002). https://doi.org/10.1177/107155760200900102

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/107155760200900102

Key words

Navigation