Skip to main content

Advertisement

Log in

The Role and Clinical Applications of Bioactive Lysolipids in Ovarian Cancer

  • Review Article
  • Published:
The Journal of the Society for Gynecologic Investigation: JSGI Aims and scope Submit manuscript

Abstract

Objective

TO review the current understanding of the role of bioactive lysolipids in ovarian cancer and their potential clinical applications.

Methods

A MEDLINE search and our own work, including some unpublished work, are the major sources of the review. The MEDLINE search terms used included lysophosphatidic acid, lysophophatidylcholine (LPC), lysophosphatidylinositol (LPT), sphingosine-1-phosphate, and sphingosylphosphorylcholine (SPC).

Results

Elevated lysolipid levels were detected in plasma and ascites samples from patients with ovarian cancer compared with samples from healthy controls or patients with nonmalignant diseases. These lysolipids regulate growth adhesion, production of angiogenic factors, and chemotherapeutic drug resistance in ovarian cancer cells. Ovarian cancer cells were likely to be at least one of the sources for elevated lysolipid levels in the blood and ascites of patients with ovarian cancer.

Conclusions

Bioactive lysolipid levels might be sensitive markers for detecting gynecologic cancers, particularly ovarian cancer. The prognostic value of lysolipids in ascites is worth further investigation. Bioactive lysolipid molecules can affect both the proliferative and metastatic potentials of ovarian cancer cells; therefore, regulation of the production or degradation of these lipids and interception of the interaction between these lipids and their receptors could provide novel and useful preventative or therapeutic measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ACS Cancer Facts & Figures-2000. American Cancer Society Inc, New York, 2000.

  2. Schwartz PE, Taylor KJ. Is early detection of ovarian cancer possible? Ann Med 1995;27:519–28.

    Article  CAS  PubMed  Google Scholar 

  3. Taylor KJ, Schwartz PE. Screening for early ovarian cancer. Radiology 1994;192:1–10.

    Article  CAS  PubMed  Google Scholar 

  4. Westermann AM, Beijnen JH, Moolenaar WH, Rodenhuis S. Growth factors in human ovarian cancer. Cancer Treat Rev 1997;23:113–31.

    Article  CAS  PubMed  Google Scholar 

  5. Berchuck A, Carney M. Human ovarian cancer of the surface epithelium. Biochem Pharmacol 1997;54:541–4.

    Article  CAS  PubMed  Google Scholar 

  6. Bookman MA. Biological therapy of ovarian cancer: Current directions. Semin Oncol 1998;25:381–96.

    CAS  PubMed  Google Scholar 

  7. Liscovitch M, Cantley LC. Lipid second messengers. Cell 1994; 77:329–34.

    Article  CAS  PubMed  Google Scholar 

  8. Moolenaar WH. Bioactive lysophospholipids and their G protein-coupled receptors. Exp Cell Res 1999;253:230–8.

    Article  CAS  PubMed  Google Scholar 

  9. Van Brooklyn JR, Lee MJ, Menzeleev R, et al. Dual actions of sphingosine-1-phosphate: Extracellular through the Gi-coupled receptor Edg-1 and intracellular to regulate proliferation and survival. J Cell Biol 1998;142:229–40.

    Article  Google Scholar 

  10. Spiegel S, Milstien S. Sphingolipid metabolites: Members of a new class of lipid second messengers. J Membr Biol 1995;146: 225–37.

    Article  CAS  PubMed  Google Scholar 

  11. Moolenaar WH, Kranenburg O, Postma FR, Zondag GC. Lysophosphatidic acid: G-protein signalling and cellular responses. Curr Opin Cell Biol 1997;9:168–73.

    Article  CAS  PubMed  Google Scholar 

  12. Meyer zu Heringdorf D, van Koppen CJ, Jakobs KH. Molecular diversity of sphingolipid signalling. FEBS Lett 1997;410: 34–8.

    Article  CAS  PubMed  Google Scholar 

  13. Spiegel S. Sphingosine 1-phosphate: a prototype of a new class of second messengers. J Leukoc Biol 1999;65:341–4.

    Article  CAS  PubMed  Google Scholar 

  14. Gaits F, Salles JP, Chap H. Dual effect of lysophosphatidic acid on proliferation of glomerular mesangial cells. Kidney Int 1997; 51:1022–7.

    Article  CAS  PubMed  Google Scholar 

  15. Gennero I, Xuereb JM, Simon MF, et al. Effects of lysophosphatidic acid on proliferation and cytosolic Ca+ + of human adult vascular smooth muscle cells in culture. Thrombosis Res 1999;94:317–26.

    Article  CAS  Google Scholar 

  16. Goetzl EJ, Dolezalova H, Kong Y, Zeng L. Dual mechanisms for lysophospholipid induction of proliferation of human breast carcinoma cells. Cancer Res 1999;59:4732–7.

    CAS  PubMed  Google Scholar 

  17. Edsall LC, Pirianov GG, Spiegel S. Involvement of sphingosine 1-phosphate in nerve growth factor-mediated neuronal survival and differentiation. J Neurosci 1997;17:6952–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Alessenko AV. The role of sphingomyelin cycle metabolites in transduction of signals of cell proliferation differentiation and death. Membr Cell Biol 2000;13:303–20.

    CAS  PubMed  Google Scholar 

  19. Spiegel S, Cuvillier O, Edsall L, et al. Roles of sphingosine-1-phosphate in cell growth differentiation and death. Biochemistry (Mosc) 1998;63:69–73.

    CAS  Google Scholar 

  20. Boguslawski G, Lyons D, Harvey KA, Kovala AT, English D. Sphingosylphosphorylcholine induces endothelial cell migration and morphogenesis. Biochem Biophys Res Commun 2000;272: 603–9.

    Article  CAS  PubMed  Google Scholar 

  21. Imamura F, Mukai M, Ayaki M, et al. Involvement of small GTPases Rho and Rac in the invasion of rat ascites hepatoma cells. Clin Exp Metastasis 1999;17:141–8.

    Article  CAS  PubMed  Google Scholar 

  22. Genda T, Sakamoto M, Ichida T, et al. Cell motility mediated by rho and Rho-associated protein kinase plays a critical role in intrahepatic metastasis of human hepatocellular carcinoma. Hepatology 1999;30:1027–36.

    Article  CAS  PubMed  Google Scholar 

  23. Manning TJ Jr, Parker JC, Sontheimer H. Role of lysophosphatidic acid and rho in glioma cell motility. Cell Motil Cytoskeleton 2000;45:185–99.

    Article  CAS  PubMed  Google Scholar 

  24. Mukai M, Imamura F, Ayaki M, et al. Inhibition of tumor invasion and metastasis by a novel lysophosphatidic acid (cyclic LPA). Int J Cancer 1999;81:918–22.

    Article  CAS  PubMed  Google Scholar 

  25. Panetti TS, Chen H, Misenheimer TM, Getzler SB, Mosher DF. Endothelial cell mitogenesis induced by LPA: Inhibition by thrombospondin-1 and thrombospondin-2. J Lab Clin Med 1997;129:208–16.

    Article  CAS  PubMed  Google Scholar 

  26. Ren XD, Kiosses WB, Schwartz MA. Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J 1999;18:578–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang F, Van Brocklyn JR, Edsall L, Nava VE, Spiegel S. Sphingosine-1-phosphate inhibits motility of human breast cancer cells independently of cell surface receptors. Cancer Res 1999;59:6185–91.

    CAS  PubMed  Google Scholar 

  28. Sadahira Y, Zheng M, Ruan F, Hakomori S, Igarashi Y. Sphingosine-1-phosphate inhibits extracellular matrix protein-induced haptotactic motility but not adhesion of B16 mouse melanoma cells. FEBS Lett 1994;340:99–103.

    Article  CAS  PubMed  Google Scholar 

  29. An S. Molecular identification and characterization of G protein-coupled receptors for lysophosphatidic acid and sphingosine 1-phosphate. Ann N Y Acad Sci 2000;905:25–33.

    Article  CAS  PubMed  Google Scholar 

  30. Sadahira Y, Ruan F, Hakomori S, Igarashi Y. Sphingosine 1-phosphate a specific endogenous signaling molecule controlling cell motility and tumor cell invasiveness. Proc Natl Acad Sci USA 1992;89:9686–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Spiegel S, Olivera A, Zhang H, Thompson EW, Su Y, Berger A. Sphingosine-1-phosphate a novel second messenger involved in cell growth regulation and signal transduction affects growth and invasiveness of human breast cancer cells. Breast Cancer Res Treat 1994;31:337–48.

    Article  CAS  PubMed  Google Scholar 

  32. Stain JC, Michiels F, van der Kammen RA, Moolenaar WH, Collard JG. Invasion of T-lymphoma cells: Cooperation between Rho family GTPases and lysophospholipid receptor signaling. EMBO J 1998;17:4066–74.

    Article  Google Scholar 

  33. Yanai N, Matsui N, Furusawa T, Okubo T, Obinata M. Sphingosine-1-phosphate and lysophosphatidic acid trigger invasion of primitive hematopoietic cells into stromal cell layers. Blood 2000;96:139–44.

    Article  CAS  PubMed  Google Scholar 

  34. Jalink K, Eichholtz T, Postma FR, van Corven EJ, Moolenaar WH. Lysophosphatidic acid induces neuronal shape changes via a novel receptor-mediated signaling pathway: Similarity to thrombin action. Cell Growth Differentiation 1993;4:247–55.

    CAS  PubMed  Google Scholar 

  35. Sakai T, Peyruchaud O, Fassler R, Mosher DF. Restoration of beta1A integrins is required for lysophosphatidic acid-induced migration of beta1-null mouse fibroblastic cells. J Biol Chem 1998;273:19378–82.

    Article  CAS  PubMed  Google Scholar 

  36. English D, Kovala AT, Welch Z, et al. Induction of endothelial cell chemotaxis by sphingosine 1 -phosphate and stabilization of endothelial monolayer barrier function by lysophosphatidic acid potential mediators of hematopoietic angiogenesis. J Hematother Stem Cell Res 1999;8:627–34.

    Article  CAS  PubMed  Google Scholar 

  37. Spiegel S. Sphingosine 1-phosphate: A ligand for the EDG-1 family of G-protein-coupled receptors. Ann N Y Acad Sci 2000,905:54–60.

    Article  CAS  PubMed  Google Scholar 

  38. Bornfeldt KE, Graves LM, Raines EW, et al. Sphingosine-1-phosphate inhibits PDGF-induced chemotaxis of human arterial smooth muscle cells: Spatial and temporal modulation of PDGF chemotactic signal transduction. J Cell Biol 1995;130:193–206.

    Article  CAS  PubMed  Google Scholar 

  39. Ramakers GJA, Moolenaar WH. Regulation of astrocyte morphology by RhoA and lysophosphatidic acid. Exp Cell Res 1998;245:252–62.

    Article  CAS  PubMed  Google Scholar 

  40. Baker RR, Chang HY. Lysophosphatidic acid alkylglycerophosphate and alkylacetylglycerophosphate increase the neuronal nuclear acetylation of 1-acyl lysophosphatidyl choline by inhibition of lysophospholipase. Mol Cell Biochem 1999;198: 47–55.

    Article  CAS  PubMed  Google Scholar 

  41. Tas PW, Koschel K. Sphingosine-1-phosphate induces a Ca2 + signal in primary rat astrocytes and a Ca2+ signal and shape changes in C6 rat glioma cells. J Neurosci Res 1998;52:427–34.

    Article  CAS  PubMed  Google Scholar 

  42. Postma FR, Jalink K, Hengeveld T, Moolenaar WH. Sphingosine-1-phosphate rapidly induces Rho-dependent neurite retraction: Action through a specific cell surface receptor. EMBO J 1996;15:2388–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yatomi Y, Ruan F, Hakomori S, Igarashi Y. Sphingosine-1-phosphate: A platelet-activating sphingolipid released from agonist-stimulated human platelets. Blood 1995;86:193–202.

    Article  CAS  PubMed  Google Scholar 

  44. Kranenburg O, Poland M, Gebbink M, Oomen L, Moolenaar WH. Dissociation of LPA-induced cytoskeletal contraction from stress fiber formation by differential localization of RhoA. J Cell Sci 1997;110:2417–27.

    CAS  PubMed  Google Scholar 

  45. Manning TJ Jr, Rosenfeld SS, Sontheimer H. Lysophosphatidic acid stimulates actomyosin contraction in astrocytes. J Neurosci Res 1998;53:343–52.

    Article  CAS  PubMed  Google Scholar 

  46. Toews ML, Ustinova EE, Schultz HD. Lysophosphatidic acid enhances contractility of isolated airway smooth muscle. J Appl Physiol 1997;83:1216–22.

    Article  CAS  PubMed  Google Scholar 

  47. Bischoff A, Czyborra P, Fetscher C, Meyer Zu Heringdorf D, Jakobs KH, Michel MC. Sphingosine-1-phosphate and sphingosylphosphorylcholine constrict renal and mesenteric microvessels in vitro. Br J Pharmacol 2000;130:1871–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bitar KN, Yamada H. Modulation of smooth muscle contraction by sphingosylphosphorylcholine. Am J Physiol 1995;269: G370–7.

    CAS  PubMed  Google Scholar 

  49. Sturm A, Sudermann T, Schulte KM, Goebell H, Dignass AU. Modulation of intestinal epithelial wound healing in vitro and in vivo by lysophosphatidic acid. Gastroenterology 1999;117:368–77.

    Article  CAS  PubMed  Google Scholar 

  50. Pietruck F, Busch S, Virchow S, Brockmeyer N, Siffert W. Signalling properties of lysophosphatidic acid in primary human skin fibroblasts: role of pertussis toxin-sensitive GTP-binding proteins. Naunyn Schmiedebergs Arch Pharmacol 1997;355: 1–7.

    Article  CAS  PubMed  Google Scholar 

  51. Kupperman E, An S, Osborne N, Waldron S, Stainier DY. A sphingosine-1-phosphate receptor regulates cell migration during vertebrate heart development. Nature 2000;406:192–5.

    Article  CAS  PubMed  Google Scholar 

  52. Sun L, Xu L, Henry FA, Spiegel S, Nielsen TB. A new wound healing agent—sphingosylphosphorylcholine. J Investig Dermatol 1996;106:232–7.

    Article  CAS  PubMed  Google Scholar 

  53. Imamura F, Shinkai K, Mukai M, et al. Rho-mediated protein tyrosine phosphorylation in lysophosphatidic-acid-induced tumor-cell invasion. Int J Cancer 1996;65:627–32.

    Article  CAS  PubMed  Google Scholar 

  54. Jalink K, Moolenaar WH, Van Duijn B. Lysophosphatidic acid is a chemoattractant for Dictyostelium discoideum amoebae. Proc Natl Acad Sci U S A 1993;90:1857–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Snitko Y, Yoon ET, Cho W. High specificity of human secretory class II phospholipase A2 for phosphatidic acid. Biochem J 1997;321:737–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nugent D, Xu Y. Sphingosine-1-phosphate: Characterization of its inhibition of platelet aggregation. Platelets 2000;11:226–32.

    Article  CAS  PubMed  Google Scholar 

  57. Motohashi K, Shibata S, Ozaki Y, Yatomi Y, Igarashi Y. Identification of lysophospholipid receptors in human platelets: the relation of two agonists lysophosphatidic acid and sphin-gosine 1-phosphate. FEBS Lett 2000;468:189–93.

    Article  CAS  PubMed  Google Scholar 

  58. Gueguen G, Gaige B, Grevy JM, et al. Structure-activity analysis of the effects of lysophosphatidic acid on platelet aggregation. Biochemistry 1999;38:8440–50.

    Article  CAS  PubMed  Google Scholar 

  59. Yatomi Y, Yamamura S, Ruan F, Igarashi Y. Sphingosine 1 -phosphate induces platelet activation through an extracellular action and shares a platelet surface receptor with lysophosphatidic acid. J Biol Chem 1997;272:5291–7.

    Article  CAS  PubMed  Google Scholar 

  60. Gerrard JM, Robinson P Narvey M, McNicol A. Increased phosphatidic acid and decreased lysophosphatidic acid in response to thrombin is associated with inhibition of platelet aggregation. Biochem Cell Biol 1993;71:432–9.

    Article  CAS  PubMed  Google Scholar 

  61. Fernhout BJ, Dijcks FA, Moolenaar WH, Ruigt GS. Lysophosphatidic acid induces inward currents in Xenopus laevis oocytes; evidence for an extracellular site of action. Eur J Pharmacol 1992;213:313–5.

    Article  CAS  PubMed  Google Scholar 

  62. Gerrard JM, Beattie LL, McCrae JM, Singhroy S. The influence of lysophosphatidic acid on platelet protein phosphorylation. Biochem Cell Biol 1987;65:642–50.

    Article  CAS  PubMed  Google Scholar 

  63. Simon MF, Chap H, Douste-Blazy L. Platelet aggregating activity of lysophosphatidic acids is not related to their calcium ionophore properties. FEBS Lett 1984;166:115–9.

    Article  CAS  PubMed  Google Scholar 

  64. MacIntyre DE, Shaw AM. Phospholipid-induced human platelet activation: effects of calcium channel blockers and calcium chelators. Thromb Res 1983;31:833–44.

    Article  CAS  PubMed  Google Scholar 

  65. Gerrard JM, Kindom SE, Peterson DA, White JG. Lysophosphatidic acids. II. Interaction of the effects of adenosine diphosphate and lysophosphatidic acids in dog rabbit and human platelets. Am J Pathol 1979;97:531–47.

    CAS  PubMed  Google Scholar 

  66. Schumacher KA, Classen HG, Spath M. Platelet aggregation evoked in vitro and in vivo by phosphatidic acids and lysoderivatives: Identity with substances in aged serum (DAS). Thromb Haemost 1979;42:631–40.

    Article  CAS  PubMed  Google Scholar 

  67. Nugent D, Xu Y. Sphingosine-1-phosphate: characterization of its inhibition of platelet aggregation [In Process Citation]. Platelets 2000;11:226–32.

    Article  CAS  PubMed  Google Scholar 

  68. Simon CG Jr, Gear AR. Sphingolipid metabolism during human platelet activation. Thromb Res 1999;94:13–23.

    Article  CAS  PubMed  Google Scholar 

  69. Zanglis A, Lianos EA, Demopoulos CA. The biological activity of acetylated sphingosylphosphorylcholine derivatives. Int J Biochem Cell Biol 1996;28:63–74.

    Article  CAS  PubMed  Google Scholar 

  70. Pustilnik TB, Estrella V, Wiener JR, et al. Lysophosphatidic acid induces urokinase secretion by ovarian cancer cells. Clin Cancer Res 1999;5:3704–10.

    CAS  PubMed  Google Scholar 

  71. Piazza GA, Ritter JL, Baracka CA. Lysophosphatidic acid induction of transforming growth factors alpha and beta: Modulation of proliferation and differentiation in cultured human keratinocytes and mouse skin. Exp Cell Res 1995;216:51–64.

    Article  CAS  PubMed  Google Scholar 

  72. Cunnick JM, Dorsey JF, Standley T, et al. Role of tyrosine kinase activity of epidermal growth factor receptor in the lysophosphatidic acid-stimulated mitogen-activated protein kinase pathway. J Biol Chem 1998;273:14468–75.

    Article  CAS  PubMed  Google Scholar 

  73. Reiser CO, Lanz T, Hofrnann F, Hofer G, Rupprecht HD, Goppelt-Struebe M. Lysophosphatidic acid-mediated signal-transduction pathways involved in the induction of the early-response genes prostaglandin G/H synthase-2 and Egr-1: A critical role for the mitogen-activated protein kinase p38 and for Rho proteins. Biochem J 1998;330:1107–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Berger A, Bittman R, Schmidt RR, Spiegel S. Structural requirements of sphingosylphosphocholine and sphingosine-1-phosphate for stimulation of activator protein-1 activity. Mol Pharmacol 1996;50:451–7.

    CAS  PubMed  Google Scholar 

  75. Imokawa G, Takagi Y, Higuchi K, Kondo H, Yada Y. Sphingosylphosphorylcholine is a potent inducer of intercellular adhesion molecule-1 expression in human keratinocytes. J Invest Dermatol 1999;112:91–6.

    Article  CAS  PubMed  Google Scholar 

  76. Holtsberg FW, Steiner MR, Bruce-Keller AJ, et al. Lysophosphatidic acid and apoptosis of nerve growth factor-differentiated PC12 cells. J Neurosci Res 1998;53:685–96.

    Article  CAS  PubMed  Google Scholar 

  77. Niwa M, Kozawa O, Matsuno H, Kanamori Y, Hara A, Uematsu T. Tumor necrosis factor-alpha-mediated signal transduction in human neutrophils: involvement of sphingomyelin metabolites in the priming effect of TNF-alpha on the fMLP-stimulated superoxide production. Life Sci 2000;66:245–56.

    Article  CAS  PubMed  Google Scholar 

  78. Irie F, Hirabayashi Y. Ceramide prevents motoneuronal cell death through inhibition of oxidative signal. Neurosci Res 1999;35:135–44.

    Article  CAS  PubMed  Google Scholar 

  79. Alemany R, Meyer zu Heringdorf D, van Koppen CJ, Jakobs KH. Formyl peptide receptor signaling in HL-60 cells through sphingosine kinase. J Biol Chem 1999;274:3994–9.

    Article  CAS  PubMed  Google Scholar 

  80. Mogami K, Mizukami Y, Todoroki-Ikeda N, et al. Sphingosylphosphorylcholine induces cytosolic Ca(2+) elevation in endothelial cells in situ and causes endothelium-dependent relaxation through nitric oxide production in bovine coronary artery [published erratum appears in FEBS Lett 2000 Jan 28; 466(2–3):395]. FEBS Lett 1999;457:375–80.

    Article  CAS  PubMed  Google Scholar 

  81. Xu Y, Shen Z, Wiper D, et al. Lysophosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers. JAMA 1998;280:719–23.

    Article  CAS  PubMed  Google Scholar 

  82. Shen Z, Belinson J, Morton RE, Xu Y. Phorbol 12-myristate 13-acetate stimulates lysophosphatidic acid secretion from ovarian and cervical cancer cells but not from breast or leukemia cells. Gynecol Oncol 1998;71:364–8.

    Article  CAS  PubMed  Google Scholar 

  83. Westermann AM, Havik E, Postma FR, et al. Malignant effusions contain lysophosphatidic acid (LPA)-like activity. Ann Oncol 1998;9:437–42.

    Article  CAS  PubMed  Google Scholar 

  84. Inoue CN, Epstein M, Forster HG, Hotta O, Kondo Y, Iinuma K. Lysophosphatidic acid and mesangial cells: Implications for renal diseases. Clin Sci 1999;96:431–6.

    Article  CAS  Google Scholar 

  85. Siess W, Zangl KJ, Essler M, et al. Lysophosphatidic acid mediates the rapid activation of platelets and endothelial cells by mildly oxidized low density lipoprotein and accumulates in human atherosclerotic lesions. Proc Natl Acad Sci USA 1999;96:6931–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sayas CL, Moreno-Flores MT, Avila J, Wandosell F. The neurite retraction induced by lysophosphatidic acid increases Alzheimer’s disease-like tau phosphorylation. J Biol Chem 1999;274:37046–52.

    Article  CAS  PubMed  Google Scholar 

  87. Xu Y, Shen Z, Wiper DW, et al. Lysophosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers [see comments]. JAMA 1998:280:719–23.

    Article  CAS  PubMed  Google Scholar 

  88. Merrill AH Jr, Schmelz EM, Dillehay DL, et al. Sphingolipids— the enigmatic lipid class: biochemistry physiology and pathophysiology. Toxicol Appl Pharmacol 1997;142:208–25.

    Article  CAS  PubMed  Google Scholar 

  89. Berger A, Rosenthal D, Spiegel S. Sphingosylphosphocholine a signaling molecule which accumulates in Niemann-Pick disease type A stimulates DNA-binding activity of the transcription activator protein AP-1. Proc Natl Acad Sci U S A 1995;92: 5885–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ohno K. Niemann-Pick disease types A and B. Nippon Rinsho 1995;53:3014–8.

    CAS  PubMed  Google Scholar 

  91. An S, Goetzl EJ, Lee H. Signaling mechanisms and molecular characteristics of G protein-coupled receptors for lysophosphatidic acid and sphingosine 1-phosphate. J Cell Biochem 1998; 30–31 (Suppl):147–57.

    Article  Google Scholar 

  92. Chun J. Lysophospholipid receptors: Implications for neural signaling. Crit Rev Neurobiol 1999;13:151–68.

    Article  CAS  PubMed  Google Scholar 

  93. Chun J, Contos JJ, Munroe D. A growing family of receptor genes for lysophosphatidic acid (LPA) and other lysophospholipids (LPs). Cell Biochem Biophys 1999;30:213–42.

    Article  CAS  PubMed  Google Scholar 

  94. Pyne S, Pyne NJ. Sphingosine 1-phosphate signalling in mammalian cells. Biochem J 2000;349:385–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lynch KR, Im I. Life on the edg. Trends Pharmacol Sci 1999;20:473–5.

    Article  CAS  PubMed  Google Scholar 

  96. Moolenaar WH. Development of our current understanding of bioactive lysophospholipids [In Process Citation]. Ann N Y Acad Sci 2000;905:1–10.

    Article  CAS  PubMed  Google Scholar 

  97. Yamazaki Y, Kon J, Sato K, et al. Edg-6 as a putative sphingosine 1-phosphate receptor coupling to Ca(2+) signaling pathway. Biochem Biophys Res Commun 2000;268:583–9.

    Article  CAS  PubMed  Google Scholar 

  98. Im DS, Heise CE, Ancellin N, et al. Characterization of a novel sphingosine 1-phosphate receptor Edg-8. J Biol Chem 2000; 275:14281–6.

    Article  CAS  PubMed  Google Scholar 

  99. Xu Y, Zhu K, Hong G, et al. Sphingosylphosphorylcholine is a ligand for ovarian cancer G-protein-coupled receptor 1. Nat Cell Biol 2000;2:261–7.

    Article  CAS  PubMed  Google Scholar 

  100. Spiegel S, Olivera A, Carlson RO. The role of sphingosine in cell growth regulation and transmembrane signaling. Adv Lipid Res 1993;25:105–29.

    CAS  PubMed  Google Scholar 

  101. Spiegel S. Sphingosine and sphingosine 1-phosphate in cellular proliferation: Relationship with protein kinase C and phosphatidic acid. J Lipid Mediators 1993;8:169–75.

    CAS  Google Scholar 

  102. Spiegel S, Olivera A, Zhang H, Thompson EW, Su Y, Berger A. Sphingosine-1-phosphate: A novel second messenger involved in cell growth regulation and signal transduction affects growth and invasiveness of human breast cancer cells. Breast Cancer Res Treatment 1994;31:337–48.

    Article  CAS  Google Scholar 

  103. Ghosh TK, Bian J, Gill DL. Intracellular calcium release mediated by sphingosine derivatives generated in cells. Science 1990; 248:1653–6.

    Article  CAS  PubMed  Google Scholar 

  104. Catalan RE, Miguel BG, Calcerrada MC, Ruiz S, Martinez AM. Sphingolipids increase calcium concentration in isolated rat liver nuclei. Biochem Biophys Res Commun 1997;238:347–50.

    Article  CAS  PubMed  Google Scholar 

  105. Calcerrada MC, Miguel BG, Catalan RE, Martinez AM. Sphingosylphosphorylcholine increases calcium concentration in isolated brain nuclei. Neurosci Res 1999;33:229–32.

    Article  CAS  PubMed  Google Scholar 

  106. Van Koppen CJ, Meyer Zu, Heringdorf D, Zhang C, Laser KT, Jakobs KH. A distinct G(i) protein-coupled receptor for sphingosylphosphorylcholine in human leukemia HL-60 cells and human neutrophils. Mol Pharmacol 1996;49:956–61.

    PubMed  Google Scholar 

  107. Repp H, Koschinski A, Decker K, Dreyer F. Activation of a Ca2+-dependent K+ current in mouse fibroblasts by lysophosphatidic acid requires a pertussis toxin-sensitive G protein and Ras. Naunyn Schmiedebergs Arch Pharmacol 1998;358:509–17.

    Article  CAS  PubMed  Google Scholar 

  108. Bunemann M, Liliom K, Brandts BK, et al. A novel membrane receptor with high affinity for lysosphingomyelin and sphingosine 1-phosphate in atrial myocytes. EMBO J 1996;15:5527–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Himmel HM, Meyer Zu Heringdorf D, Graf E, et al. Evidence for edg-3 receptor-mediated activation of I(K.ACh) by sphingosine-1-phosphate in human atrial cardiomyocytes [In Process Citation]. Mol Pharmacol 2000;58:449–54.

    Article  CAS  PubMed  Google Scholar 

  110. Bunemann M, Liliom K, Brandts BK, et al. A novel membrane receptor with high affinity for lysosphingomyelin and sphingosine 1-phosphate in atrial myocytes. EMBO J 1996;15:5527–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Durieux ME, Salafranca MN, Lynch KR, Moorman JR. Lysophosphatidic acid induces a pertussis toxin-sensitive Ca(2+)-activated Cl- current in Xenopus laevis oocytes. Am J Physiol 1992;263:C896–900.

    Article  CAS  PubMed  Google Scholar 

  112. Durieux ME, Carlisle SJ, Salafranca MN, Lynch KR. Responses to sphingosine-1-phosphate in X. laevis oocytes: Similarities with lysophosphatidic acid signaling. Am J Physiol 1993;264: C1360–4.

    CAS  PubMed  Google Scholar 

  113. Moolenaar WH, van Corven EJ. Growth factor-like action of lysophosphatidic acid: Mitogenic signalling mediated by G proteins. Ciba Found Symp 1990;150:99–106.

    CAS  PubMed  Google Scholar 

  114. Vasta V, Meacci E, Catarzi S, Donati C, Farnararo M, Bruni P. Sphingosine 1-phosphate induces arachidonic acid mobilization in A549 human lung adenocarcinoma cells. Biochim Biophys Acta 2000;1483:154–60.

    Article  CAS  PubMed  Google Scholar 

  115. Desai NN, Carlson RO, Mattie ME, et al. Signaling pathways for sphingosylphosphorylcholine-mediated mitogenesis in Swiss 3T3 fibroblasts. J Cell Biol 1993;121:1385–95.

    Article  CAS  PubMed  Google Scholar 

  116. An S, Goetzl EJ, Lee H. Signaling mechanisms and molecular characteristics of G protein-coupled receptors for lysophosphatidic acid and sphingosine 1-phosphate. J Cell Biochem 1998; 31(Suppl):147–57.

    Article  Google Scholar 

  117. Sato K, Murata N, Kon J, et al. Down regulation of mRNA expression of Edg-3 a putative sphingosine 1-phosphate receptor coupled to Ca2+ signaling during differentiation of HL-60 leukemia cells. Biochem Biophys Res Commun 1998; 253:253–6.

    Article  CAS  PubMed  Google Scholar 

  118. Gonda K, Okamoto H, Takuwa N, et al. The novel sphingosine 1-phosphate receptor AGR16 is coupled via pertussis toxin-sensitive and -insensitive G-proteins to multiple signalling pathways. Biochem J 1999;337:67–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Okajima F, Tomura H, Sho K, et al. Sphingosine 1-phosphate stimulates hydrogen peroxide generation through activation of phospholipase C-Ca2+ system in FRTL-5 thyroid cells: Possible involvement of guanosine triphosphate-binding proteins in the lipid signaling. Endocrinology 1997;138:220–9.

    Article  CAS  PubMed  Google Scholar 

  120. Okajima F, Tomura H, Sho K, Nochi H, Tamoto K, Kondo Y. Involvement of pertussis toxin-sensitive GTP-binding proteins in sphingosine 1-phosphate-induced activation of phospholipase C-Ca2 + system in HL60 leukemia cells. FEBS Lett 1996;379: 260–4.

    Article  CAS  PubMed  Google Scholar 

  121. Gonda K, Okamoto H, Takuwa N, et al. The novel sphingosine 1-phosphate receptor AGR16 is coupled via pertussis toxin-sensitive and -insensitive G-proteins to multiple signalling pathways. Biochemical J 1999;337:67–75.

    Article  CAS  Google Scholar 

  122. Okamoto H, Takuwa N, Gonda K, et al. EDG1 is a functional sphingosine-1-phosphate receptor that is linked via a Gi/o to multiple signaling pathways including phospholipase C activation Ca2+ mobilization Ras-mitogen-activated protein kinase activation and adenylate cyclase inhibition. J Biol Chem 1998; 273:27104–10.

    Article  CAS  PubMed  Google Scholar 

  123. Sando JJ, Chertihin OI. Activation of protein kinase C by lysophosphatidic acid: Dependence on composition of phospholipid vesicles. Biochem J 1996;317:583–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Buehrer BM, Bardes ES, Bell RM. Protein kinase C-dependent regulation of human erythroleukemia (HEL) cell sphingosine kinase activity. Biochim Biophys Acta 1996;1303:233–42.

    Article  PubMed  Google Scholar 

  125. Orlati S, Hrelia S, Rugolo M. Pertussis toxin- and PMA-insensitive calcium mobilization by sphingosine in CFPAC-1 cells: evidence for a phosphatidic acid-dependent mechanism. Biochim Biophys Acta 1997;1358:93–102.

    Article  CAS  PubMed  Google Scholar 

  126. Seufferlein T, Rozengurt E. Sphingosylphosphorylcholine activation of mitogen-activated protein kinase in Swiss 3T3 cells requires protein kinase C and a pertussis toxin-sensitive G protein. J Biol Chem 1995;270:24334–42.

    Article  CAS  PubMed  Google Scholar 

  127. Suzuki Y, Ozawa Y, Murakami K, Miyazaki H. Lysophosphatidic acid inhibits epidermal-growth-factor-induced Stat1 signaling in human epidermoid carcinoma A431 cells. Biochem Biophys Res Commun 1997;240:856–61.

    Article  CAS  PubMed  Google Scholar 

  128. Ohata H, Aizawa H, Momose K. Lysophosphatidic acid sensitizes mechanical stress-induced Ca2+ response via activation of phospholipase C and tyrosine kinase in cultured smooth muscle cells. Life Sci 1997;60:1287–95.

    Article  CAS  PubMed  Google Scholar 

  129. Okajima F, Kondo Y. Pertussis toxin inhibits phospholipase C activation and Ca2+ mobilization by sphingosylphosphorylcholine and galactosylsphingosine in HL60 leukemia cells. Implications of GTP-binding protein-coupled receptors for lysosphingolipids. J Biol Chem 1995;270:26332–40.

    CAS  PubMed  Google Scholar 

  130. Spangelo BL, Jarvis WD. Lysophosphatidylcholine stimulates interleukin-6 release from rat anterior pituitary cells in vitro. Endocrinology 1996;137:4419–26.

    Article  CAS  PubMed  Google Scholar 

  131. van der Bend RL, de Widt J, van Corven EJ, Moolenaar WH, van Blitterswijk WJ. The biologically active phospholipid lysophosphatidic acid induces phosphatidylcholine breakdown in fibroblasts via activation of phospholipase D. Comparison with the response to endothelin. Biochem J 1992;285:235–40.

    PubMed  Google Scholar 

  132. Orlati S, Porcelli AM, Hrelia S, Van Brocklyn JR, Spiegel S, Rugolo M. Sphingosine-1-phosphate activates phospholipase D in human airway epithelial cells via a G protein-coupled receptor. Arch Biochem Biophys 2000;375:69–77.

    Article  CAS  PubMed  Google Scholar 

  133. Banno Y, Fujita H, Ono Y, et al. Differential phospholipase D activation by bradykinin and sphingosine 1-phosphate in NIH 3T3 fibroblasts overexpressing gelsolin. J Biol Chem 1999;274: 27385–91.

    Article  CAS  PubMed  Google Scholar 

  134. Meacci E, Vasta V, Donati C, Farnararo M, Bruni P. Receptor-mediated activation of phospholipase D by sphingosine 1-phosphate in skeletal muscle C2C12 cells. A role for protein kinase C. FEBS Lett 1999;457:184–8.

    CAS  PubMed  Google Scholar 

  135. Meacci E, Donati C, Cencetti F, Romiti E, Farnararo M, Bruni P. Receptor-activated phospholipase D is present in caveolin-3-enriched light membranes of C2C12 myotubes. FEBS Lett 2000;473:10–4.

    Article  CAS  PubMed  Google Scholar 

  136. Natarajan V, Jayaram HN, Scribner WM, Garcia JG. Activation of endothelial cell phospholipase D by sphingosine and sphingosine-1-phosphate. Am J Respir Cell Mol Biol 1994; 11:221–9.

    Article  CAS  PubMed  Google Scholar 

  137. Dygas A, Sidorko M, Bobeszko M, Baranska J. Exogenous sphingosine 1-phosphate and sphingosylphosphorylcholine do not stimulate phospholipase D in C6 glioma cells. Acta Biochim Polonica 1999;46:99–106.

    Article  CAS  Google Scholar 

  138. Takeda H, Matozaki T, Takada T, et al. PI 3-kinase gamma and protein kinase C-zeta mediate RAS-independent activation of MAP kinase by a Gi protein-coupled receptor. EMBO J 1999; 18:386–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Roche S, Downward J, Raynal P, Courtneidge SA. A function for phosphatidylinositol 3-kinase beta (p85alpha-p110beta) in fibroblasts during mitogenesis: Requirement for insulin- and lysophosphatidic acid-mediated signal transduction. Mol Cell Biol 1998;18:7119–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Shahrestanifar M, Fan X, Manning DR. Lysophosphatidic acid activates NF-kappaB in fibroblasts. A requirement for multiple inputs. J Biol Chem 1999;274:3828–33.

    CAS  PubMed  Google Scholar 

  141. Shatrov VA, Lehmann V, Chouaib S. Sphingosine-1-phosphate mobilizes intracellular calcium and activates transcription factor NF-kappa B in U937 cells. Biochem Biophys Res Commun 1997;234:121–4.

    Article  CAS  PubMed  Google Scholar 

  142. Moolenaar WH. Lysophosphatidic acid signalling. Curr Opin Cell Biol 1995;7:203–10.

    Article  CAS  PubMed  Google Scholar 

  143. van Corven EJ, Hordijk PL, Medema RH, Bos JL, Moolenaar WH. Pertussis toxin-sensitive activation of p21ras by G protein-coupled receptor agonists in fibroblasts. Proc Natl Acad Sci U S A 1993;90:1257–61.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Okamoto H, Takuwa N, Yatomi Y, Gonda K, Shigematsu H, Takuwa Y. EDG3 is a functional receptor specific for sphingosine 1-phosphate and sphingosylphosphorylcholine with signaling characteristics distinct from EDG1 and AGR16. Biochem Biophys Res Commun 1999;260:203–8.

    Article  CAS  PubMed  Google Scholar 

  145. Luttrell LM, Daaka Y, Delia Rocca GJ, Lefkowitz RJ. G protein-coupled receptors mediate two functionally distinct pathways of tyrosine phosphorylation in rat la fibroblasts. Shc phosphorylation and receptor endocytosis correlate with activation of Erk kinases. J Biol Chem 1997;272:31648–56.

    CAS  PubMed  Google Scholar 

  146. Jalink K, Eichholtz T, Postma FR, van Corven E, Moolenaar WH. Lysophosphatidic acid induces neuronal shape changes via a novel receptor-mediated signaling pathway: similarity to thrombin action. Cell Growth Differ 1993;4:247–55.

    CAS  PubMed  Google Scholar 

  147. Lee OH, Lee DJ, Kim YM, et al. Sphingosine 1-phosphate stimulates tyrosine phosphorylation of focal adhesion kinase and chemotactic motility of endothelial cells via the G(i) protein-linked phospholipase C pathway. Biochem Biophys Res Commun 2000;268:47–53.

    Article  CAS  PubMed  Google Scholar 

  148. Seufferlein T, Rozengurt E. Sphingosylphosphorylcholine rapidly induces tyrosine phosphorylation of p125FAK and paxillin rearrangement of the actin cytoskeleton and focal contact assembly. Requirement of p21rho in the signaling pathway. J Biol Chem 1995;270:24343–51.

    CAS  PubMed  Google Scholar 

  149. Wang F, Nobes CD, Hall A, Spiegel S. Sphingosine 1-phosphate stimulates rho-mediated tyrosine phosphorylation of focal adhesion kinase and paxillin in Swiss 3T3 fibroblasts. Biochem J 1997;324:481–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Ramakers GJA, Moolenaar WH. Regulation of astrocyte morphology by RhoA and lysophosphatidic acid. Exp Cell Res 1998;245:252–62.

    Article  CAS  PubMed  Google Scholar 

  151. Buist A, Tertoolen LG, den Hertog J. Potentiation of G-protein-coupled receptor-induced MAP kinase activation by exogenous EGF receptors in SK-N-MC neuroepithelioma cells. Biochem Biophys Res Commun 1998;251:6–10.

    Article  CAS  PubMed  Google Scholar 

  152. Xu Y, Fang XJ, Casey G, Mills GB. Lysophospholipids activate ovarian and breast cancer cells. Biochem J 1995;309:933–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Conway AM, Pyne NJ, Pyne S. Sphingosine 1-phosphate activation of MAP kinase—involvement of PI 3-kinase and protein kinase C. Biochem Soc Trans 1997;25:S585.

    Article  CAS  PubMed  Google Scholar 

  154. Guo C, Zheng C, Martin-Padura I, Bian ZC, Guan JL. Differential stimulation of proline-rich tyrosine kinase 2 and mitogen-activated protein kinase by sphingosine 1-phosphate. Eur J Biochem 1998;257:403–8.

    Article  CAS  PubMed  Google Scholar 

  155. Chin TY, Chueh SH. Sphingosylphosphorylcholine stimulates mitogen-activated protein kinase via a Ca2+-dependent pathway. Am J Physiol 1998;275:C1255–63.

    Article  CAS  PubMed  Google Scholar 

  156. Rumenapp U, Lummen G, Virchow S, Hanske J, Meyer ZU, Heringdorf D, Jakobs KH. Sphingolipid receptor signaling and function in human bladder carcinoma cells: Inhibition of LPA-but enhancement of thrombin-stimulated cell motility. Naunyn-Schmiedebergs Arch Pharmacol 2000;361:1–11.

    Article  CAS  PubMed  Google Scholar 

  157. Koval M, Pagano RE. Lipid recycling between the plasma membrane and intracellular compartments: transport and metabolism of fluorescent sphingomyelin analogues in cultured fibroblasts. J Cell Biol 1989;108:2169–81.

    Article  CAS  PubMed  Google Scholar 

  158. Wolf DE, Winiski AP, Ting AE, Bocian KM, Pagano RE. Determination of the transbilayer distribution of fluorescent lipid analogues by nonradiative fluorescence resonance energy transfer. Biochemistry 1992;31:2865–73.

    Article  CAS  PubMed  Google Scholar 

  159. Moolenaar WH. Development of our current understanding of bioactive lysophospholipids. Ann N Y Acad Sci 2000;905:1–10.

    Article  CAS  PubMed  Google Scholar 

  160. Desai NN, Zhang H, Olivera A, Mattie ME, Spiegel S. Sphingosine-1-phosphate a metabolite of sphingosine increases phosphatidic acid levels by phospholipase D activation J Biol Chem 1992;267:23122–8.

    CAS  PubMed  Google Scholar 

  161. van Corven EJ, van Rijswijk A, Jalink K, van der Bend RL, van Blitterswijk WJ, Moolenaar WH. Mitogenic action of lysophos-phatidic acid and phosphatidic acid on fibroblasts. Dependence on acyl-chain length and inhibition by suramin. Biochem J 1992;281:163–9.

    PubMed  Google Scholar 

  162. Ikeda H, Yatomi Y, Yanase M, et al. Effects of lysophosphatidic acid on proliferation of stellate cells and hepatocytes in culture. Biochem Biophys Res Commun 1998;248:436–40.

    Article  CAS  PubMed  Google Scholar 

  163. Keller JN, Steiner MR, Holtsberg FW, Mattson MP, Steiner SM. Lysophosphatidic acid-induced proliferation-related signals in astrocytes. J Neurochem 1997;69:1073–84.

    Article  CAS  PubMed  Google Scholar 

  164. Levine JS, Koh JS, Triaca V, Lieberthal W. Lysophosphatidic acid: A novel growth and survival factor for renal proximal tubular cells. Am J Physiol 1997;273:F575–85.

    CAS  PubMed  Google Scholar 

  165. Liliom K, Fischer DJ, Virag T, et al. Identification of a novel growth factor-like lipid 1-O-cis-alk-1′-enyl-2-lyso-sn-glycero-3-phosphate (alkenyl-GP) that is present in commercial sphingolipid preparations. J Biol Chem 1998;273:13461–8.

    Article  CAS  PubMed  Google Scholar 

  166. An S, Zheng Y, Bleu T. Sphingosine 1-phosphate-induced cell proliferation survival and related signaling events mediated by G protein-coupled receptors Edg3 and Edg5. J Biol Chem 2000; 275:288–96.

    Article  CAS  PubMed  Google Scholar 

  167. Carpio LC, Stephan E, Kamer A, Dziak R. Sphingolipids stimulate cell growth via MAP kinase activation in osteoblastic cells. Prostaglandins Leukotrienes Essential Fatty Acids 1999;61: 267–73.

    Article  CAS  PubMed  Google Scholar 

  168. Spiegel S. Sphingosine and sphingosine 1-phosphate in cellular proliferation: relationship with protein kinase C and phosphatidic acid. J Lipid Mediat 1993;8:169–75.

    CAS  PubMed  Google Scholar 

  169. Spiegel S, Cuvillier O, Edsall LC, et al. Sphingosine-1-phosphate in cell growth and cell death. Ann N Y Acad Sci 1998; 845:11–8.

    Article  CAS  PubMed  Google Scholar 

  170. Berger A, Cultaro CM, Segal S, Spiegel S. The potent lipid mitogen sphingosylphosphocholine activates the DNA binding activity of upstream stimulating factor (USF) a basic helix-loop-helix-zipper protein. Biochim Biophys Acta 1998;1390:225–36.

    Article  CAS  PubMed  Google Scholar 

  171. Chin TY, Chueh SH. Sphingosylphosphorylcholine stimulates mitogen-activated protein kinase via a Ca2 +-dependent pathway. Am J Physiol 1998;275:C1255–63.

    Article  CAS  PubMed  Google Scholar 

  172. Desai NN, Spiegel S. Sphingosylphosphorylcholine is a remarkably potent mitogen for a variety of cell lines. Biochem Biophys Res Commun 1991;181:361–6.

    Article  CAS  PubMed  Google Scholar 

  173. Sekiguchi K, Yokoyama T, Kurabayashi M, Okajima F, Nagai R. Sphingosylphosphorylcholine induces a hypertrophic growth response through the mitogen-activated protein kinase signaling cascade in rat neonatal cardiac myocytes. Circ Res 1999;85:1000–8.

    Article  CAS  PubMed  Google Scholar 

  174. Tokura Y, Wakita H, Seo N, Furukawa F, Nishimura K, Takigawa M. Modulation of T-lymphocyte proliferation by exogenous natural ceramides and sphingosylphosphorylcholine. J Investig Dermatol Symp Proc 1999;4:184–9.

    Article  CAS  PubMed  Google Scholar 

  175. Imagawa W, Bandyopadhyay GK, Nandi S. Analysis of the proliferative response to lysophosphatidic acid in primary cultures of mammary epithelium: Differences between normal and tumor cells. Exp Cell Res 1995;216:178–86.

    Article  CAS  PubMed  Google Scholar 

  176. Hong G, Baudhuin LM, Xu Y. Sphingosine-1-phosphate modulates growth and adhesion of ovarian cancer cells. FEBS Lett 1999;460:513–8.

    Article  CAS  PubMed  Google Scholar 

  177. Goetzl EJ, Dolezalova H, Kong Y, Zeng L. Dual mechanisms for lysophospholipid induction of proliferation of human breast carcinoma cells. Cancer Res 1999;59:4732–7.

    CAS  PubMed  Google Scholar 

  178. Xu Y, Zhu K, Hong G, et al. Sphingosylphosphorylcholine is a ligand for ovarian cancer G-protein-coupled receptor 1. Nat Cell Biol 2000;2:261–7.

    Article  CAS  PubMed  Google Scholar 

  179. Yamada T, Okajima F, Ohwada S, Kondo Y. Growth inhibition of human pancreatic cancer cells by sphingosylphosphorylcholine and influence of culture conditions. Cell Mol Life Sci 1997;53:435–41.

    Article  CAS  PubMed  Google Scholar 

  180. Furui T, LaPushin R, Mao M, et al. Overexpression of edg-2/vzg-1 induces apoptosis and anoikis in ovarian cancer cells in a lysophosphatidic acid-independent manner. Clin Cancer Res 1999;5:4308–18.

    CAS  PubMed  Google Scholar 

  181. Goetzl EJ, Kong Y, Mei B. Lysophosphatidic acid and sphingosine 1-phosphate protection of T cells from apoptosis in association with suppression of Bax. J Immunol 1999; 162:2049–56.

    CAS  PubMed  Google Scholar 

  182. Holtsberg FW, Steiner MR, Keller JN, Mark RJ, Mattson MP, Steiner SM. Lysophosphatidic acid induces necrosis and apoptosis in hippocampal neurons. J Neurochem 1998;70:66–76.

    Article  CAS  PubMed  Google Scholar 

  183. Cuvillier O, Pirianov G, Kleuser B, et al. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 1996;381:800–3.

    Article  CAS  PubMed  Google Scholar 

  184. Cuvillier O, Rosenthal DS, Smulson ME, Spiegel S. Sphingosine 1-phosphate inhibits activation of caspases that cleave poly(ADP-ribose) polymerase and lamins during Fas- and cer-amide- mediated apoptosis in Jurkat T lymphocytes. J Biol Chem 1998;273:2910–6.

    Article  CAS  PubMed  Google Scholar 

  185. Xu Y, Fang X, Casey G, Mills G. Lysophospholipids activate ovarian and breast cancer cells. Biochem J 1995;309:933–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Xu Y, Gaudette D, Boynton J, et al. Characterization of an ovarian cancer activating factor in ascites from ovarian cancer patients. Clin Cancer Res 1995;1:1223–32.

    CAS  PubMed  Google Scholar 

  187. Mills G, May C, McGill M, Roifman C, Mellors A. A putative new growth factor in ascitic fluid from ovarian cancer patients: Identification characterization and mechanism of action. Cancer Res 1988;48:1066–71.

    CAS  PubMed  Google Scholar 

  188. Mills GB, May C, Hill M, Campbell S, Shaw P, Marks A. Ascitic fluid from human ovarian cancer patients contains growth factors necessary for intraperitoneal growth of human ovarian adenocarcinoma cells. J Clin Investig 1990;86:851–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Hong G, Baudhuin LM, Xu Y. Sphingosine-1-phosphate modulates growth and adhesion of ovarian cancer cells. FEBS Lett 1999;460:513–8.

    Article  CAS  PubMed  Google Scholar 

  190. Xiao Y, Chen Y, Kennedy AW, Belinson J, Xu Y. Evaluation of plasma lysophospholipids for diagnostic significance using electrospray ionization mass spectrometry (ESI-MS) analyses. Ann N Y Acad Sci 2000;905:242–59.

    Article  CAS  PubMed  Google Scholar 

  191. Falasca M, Corda D. Elevated levels and mitogenic activity of lysophosphatidylinositol in k-ras-transformed epithelial cells. Eur J Biochem 1994;221:383–9.

    Article  CAS  PubMed  Google Scholar 

  192. Meyer T, Hart IR. Mechanisms of tumour metastasis. Eur J Cancer 1998;34:214–21.

    Article  CAS  PubMed  Google Scholar 

  193. Joseph-Silverstein J, Silverstein RL. Cell adhesion molecules: An overview. Cancer Investig 1998;16:176–82.

    Article  CAS  Google Scholar 

  194. Fishman D, Yung Y, Stack S. Lysophosphatidic acid stimulation of matrix metalloproteinase-2 activation. In: Proceedings of the American Association of Cancer Research, 2000: 131.

  195. Imamura F, Horai T, Mukai M, Shinkai K, Sawada M, Akedo H. Induction of in vitro tumor cell invasion of cellular monolayers by lysophosphatidic acid or phospholipase D. Biochem Biophys Res Commun 1993;193:497–503.

    Article  CAS  PubMed  Google Scholar 

  196. Stam JC, Michiels F, van der Kammen RA, Moolenaar WH, Collard JG. Invasion of T-lymphoma cells: Cooperation between Rho family GTPases and lysophospholipid receptor signaling. EMBO J 1998:17:4066–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Merogi AJ, Marrogi AJ, Ramesh R, Robinson WR, Fermin CD, Freeman SM. Tumor-host interaction: analysis of cytokines growth factors and tumor-infiltrating lymphocytes in ovarian carcinomas. Hum Pathol 1997;28:321–31.

    Article  CAS  PubMed  Google Scholar 

  198. Yoneda J, Kuniyasu H, Crispens MA, Price JE, Bucana CD, Fidler IJ. Expression of angiogenesis-related genes and progression of human ovarian carcinomas in nude mice. J Natl Cancer Inst 1998;90:447–54.

    Article  CAS  PubMed  Google Scholar 

  199. Radke J, Schmidt D, Bohme M, Schmidt U, Weise W, Morenz J. Zytokinspiegel im malignen Aszites und peripheren Blut von Patientinnen mit fortgeschrittenem Ovarialkarzinom. Geburtshilfe Frauenheilkd 1996;56:83–7.

    Article  CAS  PubMed  Google Scholar 

  200. Gawrychowski K, Skopinska-Rozewska E, Barcz E, et al. Angiogenic activity and interleukin-8 content of human ovarian cancer ascites. Eur J Gynaecol Oncol 1998;19:262–4.

    CAS  PubMed  Google Scholar 

  201. Ivarsson K, Runesson E, Sundfeldt K, et al. The chemotactic cytokine interleukin-8—a cyst fluid marker for malignant epithelial ovarian cancer? Gynecol Oncol 1998;71:420–3.

    Article  CAS  PubMed  Google Scholar 

  202. Xu L, Xie K, Mukaida N, Matsushima K, Fidler IJ. Hypoxia-induced elevation in interleukin-8 expression by human ovarian carcinoma cells. Cancer Res 1999;59:5822–9.

    CAS  PubMed  Google Scholar 

  203. Harant H, Lindley I, Uthman A, et al. Regulation of interleukin-8 gene expression by all-trans retinoic acid. Biochem Bio-phys Rese Commun 1995;210:898–906.

    Article  CAS  Google Scholar 

  204. Lee LF, Schuerer-Maly CC, Lofquist AK, et al. Taxol-dependent transcriptional activation of IL-8 expression in a subset of human ovarian cancer. Cancer Res 1996;56:1303–8.

    CAS  PubMed  Google Scholar 

  205. Schwartz B, Morrison B, Wu W, Xu Y. Regulation of interleukin-8 production and gene expression in human ovarian cancer cells by lysophospholipids. In: Proceedings of the American Association of Cancer Research, 2000:585.

  206. Markman M. Systemic therapy for gynecologic cancer. Curr Opin Oncol 1992;4:939–45.

    Article  CAS  PubMed  Google Scholar 

  207. Markman M. Intraperitoneal therapy of ovarian cancer. Oncologist 1996:1:18–21.

    CAS  PubMed  Google Scholar 

  208. Markman M. Intraperitoneal therapy of ovarian cancer. Semin Oncol 1998;25:356–60.

    CAS  PubMed  Google Scholar 

  209. Ozols R, Bookman M. Carboplatin and paclitexal combination chemotherapy. In: Sharp F, Blackett T, Leake R, Berek J, eds. Ovarian cancer 4. Vol. 4. London: Chapman and Hall Medical, 1996:165–73.

    Google Scholar 

  210. Hamilton T, Johnson S, Godwin A, et al. Drug resistance in ovarian cancer and potential for its reversal. In: Ovarian cancer 3. Vol. 3. London: Chapman and Hall Medical, 1995:203–13.

    Google Scholar 

  211. Duan Z, Feller AJ, Penson RT, Chabner BA, Seiden MV. Discovery of differentially expressed genes associated with paclitaxel resistance using cDNA array technology: Analysis of interleukin (IL) 6, IL-8 and monocyte chemotactic protein 1 in the paclitaxel-resistant phenotype. Clin Cancer Res 1999;5: 3445–53.

    CAS  PubMed  Google Scholar 

  212. Hecht JH, Weiner JA, Post SR, Chun J. Ventricular zone gene-1 (vzg-1) encodes a lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral cortex. J Cell Biol 1996;135:1071–83.

    Article  CAS  PubMed  Google Scholar 

  213. Lee MJ, Thangada S, Liu H, Thompson BD, Hla T. Lysophosphatidic acid stimulates the G-protein-coupled receptor EDG-1 as a low affinity agonist. J Biol Chem 1998;273:22105–12.

    Article  CAS  PubMed  Google Scholar 

  214. Bandoh K, Aoki J, Hosono H, et al. Molecular cloning and characterization of a novel human G-protein-coupled receptor EDG7 for lysophosphatidic acid. J Biol Chem 1999;274:27776–85.

    Article  CAS  PubMed  Google Scholar 

  215. Goetzl EJ, An S. Diversity of cellular receptors and functions for the lysophospholipid growth factors lysophosphatidic acid and sphingosine 1-phosphate FASEB J 1998;12:1589–98.

    Article  CAS  PubMed  Google Scholar 

  216. Lynch KR, Im I. Life on the edg. Trends Pharmacol Sci 1999;20:473–5.

    Article  CAS  PubMed  Google Scholar 

  217. Goetzl EJ, Dolezalova H, Kong Y, et al. Distinctive expression and functions of the type 4 endothelial differentiation gene-encoded G protein-coupled receptor for lysophosphatidic acid in ovarian cancer. Cancer Res 1999;59:5370–5.

    CAS  PubMed  Google Scholar 

  218. Yamazaki Y, Kon J, Sato K, et al. Edg-6 as a putative sphingosine 1-phosphate receptor coupling to Ca(2+) signaling pathway. Biochem Biophys Res Commun 2000;268:583–9.

    Article  CAS  PubMed  Google Scholar 

  219. Bogoyevitch MA, Clerk A, Sugden PH. Activation of the mitogen-activated protein kinase cascade by pertussis toxin-sensitive and -insensitive pathways in cultured ventricular cardiomyocytes. Biochem J 1995;309:437–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Casillas AM, Amaral K, Chegini-Farahani S, Nel AE. Okadaic acid activates p42 mitogen-activated protein kinase (MAP kinase;ERK-2) in B-lymphocytes but inhibits rather than augments cellular proliferation: Contrast with phorbol 12-myristate 13-acetate. Biochem J 1993;290:545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Zhu L, Yu X, Akatsuka Y, Cooper JA, Anasetti C. Role of mitogen-activated protein kinases in activation-induced apoptosis of T cells. Immunology 1999;97:26–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. DiSaia P, Creasman W. Clinical gynecologic oncology. 5th ed. St. Louis, Missouri: Mosby-Year Book Inc, 1993.

    Google Scholar 

  223. Xu Y, Xiao Y, Baudhuin L. Ascitic fluids from ovarian cancer patients contain significantly higher levels of lysophospholipids compared with ascites from patients with non-malignant diseases. In: Proceedings of the American Association of Cancer Ressearch, 2000:860.

  224. Watson SP, McConnell RT, Lapetina EG. Decanoyl lysophosphatidic acid induces platelet aggregation through an extracellular action. Evidence against a second messenger role for lysophosphatidic acid. Biochem J 1985;232:61–6.

    CAS  PubMed  Google Scholar 

  225. Tigyi G, Henschen A, Miledi R. A factor that activates oscillatory chloride currents in Xenopus oocytes copurifies with a subfraction of serum albumin. J Biol Chem 1991;266:20602–9.

    CAS  PubMed  Google Scholar 

  226. Tigyi G, Miledi R. Lysophosphatidates bound to serum albumin activate membrane currents in Xenopus oocytes and neurite retraction in PC12 pheochromocytoma cells. J Biol Chem 1992;267:21360–7.

    CAS  PubMed  Google Scholar 

  227. Roberts R, Sciorra VA, Morris AJ. Human type 2 phosphatidic acid phosphohydrolases. Substrate specificity of the type 2a 2b and 2c enzymes and cell surface activity7 of the 2a isoform. J Biol Chem 1998;273:22059–67.

    CAS  Google Scholar 

  228. Hooks SB, Ragan SP, Lynch KR. Identification of a novel human phosphatidic acid phosphatase type 2 isoform. FEBS Lett 1998;427:188–92.

    Article  CAS  PubMed  Google Scholar 

  229. Ulrix W, Swinnen JV, Heyns W, Verhoeven G. Identification of the phosphatidic acid phosphatase type 2a isozyme as an androgen-regulated gene in the human prostatic adenocarcinoma line LNCaP. J Biol Chem 1998;273:4660–5.

    Article  CAS  PubMed  Google Scholar 

  230. Kai M, Wada I, Imai S, Sakane F, Kanoh H. Cloning and characterization of two human isozymes of Mg2+-independent phosphatidic acid phosphatase. J Biol Chem 1997;272:24572–8.

    Article  CAS  PubMed  Google Scholar 

  231. Fourcade O, Simon MF, Viode C, et al. Secretory phospholipase A2 generates the novel lipid mediator lysophosphatidic acid in membrane microvesicles shed from activated cells. Cell 1995;80:919–27.

    Article  CAS  PubMed  Google Scholar 

  232. Cho W, Han SK, Lee BI, Snitko Y, Dua R. Purification and assay of mammalian group I and group Ha secretory phospholipase A2. Methods Mol Biol 1999;109:31–8.

    CAS  PubMed  Google Scholar 

  233. Snitko Y, Koduri RS, Han SK, et al. Mapping the interfacial binding surface of human secretory group Ha phospholipase A2. Biochemistry 1997;36:14325–33.

    Article  CAS  PubMed  Google Scholar 

  234. Kim Y, Lichtenbergova L, Snitko Y, Cho W. A phospholipase A2 kinetic and binding assay using phospholipid-coated hydrophobic beads. Anal Biochem 1997;250:109–16.

    Article  CAS  PubMed  Google Scholar 

  235. van Dijk MC, Postma F, Hilkmann H, Jalink K, van Blitterswijk WJ, Moolenaar WH. Exogenous phospholipase D generates lysophosphatidic acid and activates Ras Rho and Ca2+ signaling pathways. Curr Biol 1998;8:386–92.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by an United States Army Medical Research grant (DAMD17-99-1-9563) a National Institutes of Health grant R21 CA84038-01, Atairgin Technologies Inc., and the Lynne Cohen Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Xiao, Yj., Baudhuin, L.M. et al. The Role and Clinical Applications of Bioactive Lysolipids in Ovarian Cancer. Reprod. Sci. 8, 1–13 (2001). https://doi.org/10.1177/107155760100800101

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/107155760100800101

Keywords

Navigation