Skip to main content

Advertisement

Log in

Can Murine Uterine Natural Killer Cells Give Insights Into the Pathogenesis of Preeclampsia?

  • Review Article
  • Published:
The Journal of the Society for Gynecologic Investigation: JSGI Aims and scope Submit manuscript

Abstract

These studies aimed to advance understanding of the functions of pregnancy-associated uterinelymphocytes of the natural killer (NK) cell lineage. The approach was morphometric analysis of implantation sites from timed pregnancies in genetically modified mice deficient in NK cells or in signaling associated with their major product, the cytokine interferon-γ. In four different strains of pregnant, NK cell-deficient mice, the major decidual arterioles failed to undergo modifications to their smooth-muscle coats and displayed endothelial cell damage. Decidua lacked normal cell density. This pathology was observed by the end of the first trimester, before placental differentiation. By midgestation in these strains, placentas were smaller than in control strains. In normal mice, many uterine NK cells are perivascular in location and appear to be activated because they are the major sources of interferon-γ and of the interferon-γ-regulated enzyme inducible nitric oxide synthase. During pregnancy in mice genetically ablated for interferon-γ, the interferon-γ receptor chain-α or the transcription factor interferon regulatory factor-1, uterine NK cells differentiate but appear to be abnormal both morphologically and functionally. In these three strains, failure of pregnancy-induced vascular modifications and overt necrosis of decidua occur. Thus, in mice, lymphocytes of the NK cell lineage make specialized contributions to pregnancy-associated modification of the uterine vasculature and to maintenance of decidua. These contributions are achieved through interferon-γ-mediated gene regulation and appear to enhance subsequent placental growth. Human CD56 bright decidual lymphocytes may have analogous functions. If so, changes in numbers or levels of activity of human uterine NK cells or mutations in genes regulated by uterine interferon-γ could contribute to initiation of preeclampsia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stewart IJ. Granulated metrial gland cells in “minor” species. J Reprod Immunol 1998;40:129–46.

    Article  CAS  PubMed  Google Scholar 

  2. Carlyle JR, Zuniga-Pflucker JC. Lineage commitment and differentiation of T and natural killer lymphocytes in the fetal mouse. Immunol Rev 1998;165:63–74.

    Article  CAS  PubMed  Google Scholar 

  3. Spits H, Blom B, Jaleco, et al. Early stages in development of human T, natural killer and thymic dendritic cells. Immunol Rev 1998;165:75–86.

    Article  CAS  PubMed  Google Scholar 

  4. Trinchieri, G. Biology of natural killer cells. Adv Immunol 1989;47:187–376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kurago ZB, Lutz CT, Smith KD, Colonna M. NK cell natural cytotoxicity and IFN-gamma production are not always coordinately regulated: Engagement of DX9 KIR+ NK cells by HLA-B7 variants and target cells. J Immunol 1998;160:1573–80.

    CAS  PubMed  Google Scholar 

  6. Loke YW, King A. Human implantation: Cell biology and immunology. Cambridge: Cambridge University Press, 1989:108.

    Google Scholar 

  7. Searle, RF, Jones RK, Bulmer JN. Phenotypic analysis and proliferative responses of human endometrial granulated lymphocytes during the menstrual cycle. Biol Reprod 1999;60:871–8.

    Article  CAS  PubMed  Google Scholar 

  8. Peel S. Granulated metrial gland cells. Adv Anat Embryol Cell Biol 1989;115:1–112.

    Article  CAS  PubMed  Google Scholar 

  9. Pace D, Morrison L, Bulmer JN. Proliferative activity in endometrial stromal granulocytes throughout the menstrual cycle and early pregnancy. J Clin Pathol 1989;42:35–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chantakru S, Miller C, Croy BA. Uterus lacks the capability for self-renewal of natural killer cells. Placenta 1999;20:A16.

    Google Scholar 

  11. Frey M, Packianathan NB, Fehniger TA, et al. Differential expression and function of L-selectin on CD56bright and CD56climnatural killer cell subsets. J Immunol 1998;161:400–8.

    CAS  PubMed  Google Scholar 

  12. Tedder TF, Steeber DA, Chen A, Engel P. The selectins: Vascular adhesion molecules. FASEB J 1995;9:866–73.

    Article  CAS  PubMed  Google Scholar 

  13. Gudelj L, Deniz G, Rukavina D, Johnson PM, Christmas SE. Expression of functional molecules by human CD3– decidual granular leucocyte clones. Immunology 1996;87:609–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gudelj L, Christmas SE, Laskarin G, Johnson PM, Podack ER, Rukavina D. Membrane phenotype and expression of perforin and serine esterases by CD3– peripheral blood and decidual granular lymphocyte-derived clones. Am J Reprod Immunol 1997;38:162–7.

    Article  CAS  PubMed  Google Scholar 

  15. Parr EL, Parr MB, Zheng LM, Young JDE. Granulated metrial gland cells originate by local activation of uterine natural killer lymphocytes. Biol Reprod 1991;44:834–41.

    Article  CAS  PubMed  Google Scholar 

  16. Pollack SB, Linnemeyer PA. Natural killer cells in the nonpregnant murine uterus. Nat Immun 1996;7;15:34–40.

    Google Scholar 

  17. Delgado SR, McBey BA, Yamashiro S, Fujita J, Kiso Y, Croy BA. Accounting for the peripartum loss of natural killer cell-like granulated metrial gland cells from the pregnant mouse uterus. J Leukoc Biol 1996;59:262–9.

    Article  CAS  PubMed  Google Scholar 

  18. Croy BA, Kiso Y. Granulated metrial gland cells: A natural killer cell subset of the pregnant murine uterus. Microsc Res Technol 1993;25:189–200.

    Article  CAS  Google Scholar 

  19. Burkhardt JK, Wiebel FA, Hester S, Argon Y. The giant organelles in beige and Chediak-Higashi fibroblasts are derived from late endosomcs and mature lysosomes. J Exp Med 1993;178:1845–56.

    Article  CAS  PubMed  Google Scholar 

  20. Luross J, Croy BA. A study on the relationship between parity and frequency of granulated metrial gland cells. Placenta 1996;17:521–5.

    Article  CAS  PubMed  Google Scholar 

  21. Head JR. Uterine natural killer cells during pregnancy in rodents. Nat Immun 1996/7;15:7–21.

    PubMed  Google Scholar 

  22. Wang B, Biron C, She J, et al. A block in both early T lymphocyte and natural killer cell development in transgenic mice with high-copy numbers of the humanCD3Egene. Proc Natl Acad Sci USA 1004;91:9402–6.

    Article  Google Scholar 

  23. Di Santo JP, Müller W, Guy-Grand D, Fischer A, Rajewsky D. Lymphoid development in mice with a targeted deletion of the interleukin 2 receptorγgene. Proc Natl Acad Sci USA 1995;92:377–81.

    Article  Google Scholar 

  24. Colucci F, Soudais C, Rosmaraki E, Vanes L, Tybulewicz VL, Di Santo JP. Dissecting NK cell development using a novel alymphoid mouse model: Investigating the role of the c-abl protooncogene in murine NK cell differentiation. J Immunol 1999;162:2761–5.

    CAS  PubMed  Google Scholar 

  25. Suzuki H, Duncan GS, Takimoto H, Mak TW. Abnormal development of intestinal intraepithelial lymphocytes and peripheral natural killer cells in mice lacking the IL-2Rβ chain. J Exp Med 1997;185:499–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Taki S, Sato T, Ogasawara K, et al. Multistage regulation of Th1-type immune responses by the transcription factor IRF-1. Immunity 1997;6:673–9.

    Article  CAS  PubMed  Google Scholar 

  27. Guimond MJ, Wang B, Croy BA. Immune competence involving the natural killer cell lineage promotes placental growth. Placenta 1999;20:441–50.

    Article  CAS  PubMed  Google Scholar 

  28. Guimond MJ, Luross JA, Wang B, Terhorst C, Danial S, Croy BA. Absence of natural killer cells during murine pregnancy is associated with reproductive compromise in Tge26 mice. Biol Reprod 1997;56:169–79.

    Article  CAS  PubMed  Google Scholar 

  29. Greenwood JE, Di Santo JP, Minhas K, Makita M, Kiso Y, Croy BA. Ultrastructural studies of implantation sites from mice deficient in uterine natural killer cells. Placenta (In press).

  30. Croy BA, Ashkar AA, Foster RA, et al. Histological studies of gene-ablated mice support important functional roles for natural killer cells in the uterus during pregnancy. J Reprod Immunol 1997;35:111–33.

    Article  CAS  PubMed  Google Scholar 

  31. Guimond MJ, Wang B, Croy BA. Engraftment of NK cells reverses the reproductive deficits in pregnant NK cell and T cell deficient Tgε26 mice. J Exp Med 1998;187:217–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cipolla M, Binder N, Osol G. Myoendometrial versus placental uterine arteries: Structural, mechanical, and functional differences in late-pregnant rabbits. Am J Obstet Gynecol 1997;177:215–21.

    Article  CAS  PubMed  Google Scholar 

  33. Bochm U, Klamp T, Groot M, Howard JC. Cellular responses to interferon-gamma. Annu Rev Immunol 1997;15:749–95 and appended Web site.

    Article  Google Scholar 

  34. Bochm U, Guethlcin L, Klamp T, et al. Two families of GTPases dominate the complex cellular response to IFN-γ. J Immunol 1998;161:6715–23.

    Google Scholar 

  35. Delassus S, Coutinho GC, Saucier C, Darche S, Kourilsky P. Differential cytokine expression in maternal blood and placenta during murine gestation. J Immunol 1994;152:2411–20.

    CAS  PubMed  Google Scholar 

  36. Saito S, Nishikawa K, Morii T, et al. Cytokine production by CD16-CD56bright natural killer cells in the human early pregnancy decidua. Int Immunol 1993;5:550–63.

    Google Scholar 

  37. Platt JS, Hunt JS. Interferon-gamma gene expression in cycling and pregnant mouse uterus: temporal aspects and cellular localization. J Leukoc Biol 1998;64:393–400.

    Article  CAS  PubMed  Google Scholar 

  38. Lin H, Mosmann TR, Guilbert L, Tuntipopipat S, Wegmann TG. 199. Synthesis of T helper 2-type cytokines at the maternal-fetal interface. J Immunol 1993;151:4562–73.

    CAS  PubMed  Google Scholar 

  39. Ashkar AA, Croy BA. Interferon-γ contributes to the normalcy of murine pregnancy. Biol Reprod 1999;61:493–502.

    Article  CAS  PubMed  Google Scholar 

  40. Dalton DK, Pitts-Meek S, Keshav S, Figari IS, Bradley A, Stewart TA. Multiple defects of immune cell function in mice with disrupted interferon-gamma genes. Science 1993;259:1739–42.

    Article  CAS  PubMed  Google Scholar 

  41. Huang S, Hendriks W, Althage A, et al. Immune response in mice that lack the interferon-gamma receptor. Science 1993;259:1742–5.

    Article  CAS  PubMed  Google Scholar 

  42. Gupta S, Xia G, Lee S, Pernis AB. Signaling pathways mediated by the TNF- and cytokine-receptor families target a commoncis-element of the IFN regulatory factor 1 promoter. J Immunol 1998;161:5997–6004.

    CAS  PubMed  Google Scholar 

  43. Decker T, Kovarik P, Meinke A. GAS elements: A few nucleotides with a major impact on cytokine-induced gene expression. J Interferon Cytokine Res 1997;17:121–34.

    Article  CAS  PubMed  Google Scholar 

  44. Kamijo R, Harada H, Matsuyama T, et al. Requirement for transcription factor IRF-1 in NO synthase induction in macrophages. Science 1994;263:1612–5.

    Article  CAS  PubMed  Google Scholar 

  45. Schindler C, Darnell JE. Transcriptional responses to polypeptide ligands: The JAK-STAT pathway. Annu Rev Biochem 1995;64:621–51.

    Article  CAS  PubMed  Google Scholar 

  46. Redman CW, Sacks GP, Sargent IL. Preeclampsia: An excessive maternal inflammatory response to pregnancy. Am J Obstet Gynecol 1999;180:499–506.

    Article  CAS  PubMed  Google Scholar 

  47. Hayman R, Brockelsby J, Kenny L, Baker P. Preeclampsia: The endothelium, circulating factor(s) and vascular endothelial growth factor. J Soc Gynecol Investig 1999;6:3–10.

    Article  CAS  PubMed  Google Scholar 

  48. Hunt JS, Miller L, Vassmer D, Croy BA. Expression of the inducible nitric oxide synthase gene in mouse uterine leukocytes and potential relationships with uterine function during pregnancy. Biol Reprod 1997;57:827–36.

    Article  CAS  PubMed  Google Scholar 

  49. Sladek SM, Kanbourshakir A, Watkins S, Berhgorn KA, Hoffman GE, Roberts JM. Granulated metrial gland cells contain nitric oxide synthases during pregnancv in the rat. Placenta 1998;19:55–65.

    Article  CAS  PubMed  Google Scholar 

  50. Sato TN, Tozawa Y, Deutsch U, et al. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 1995;376:70–4.

    Article  CAS  PubMed  Google Scholar 

  51. Suri C, Jones PF, Patan S, et al. Requisite role of angiopoietin-1, a ligand for the T1E2 receptor, during embrvonic angiogenesis. Cell 1996;87:1171–80.

    Article  CAS  PubMed  Google Scholar 

  52. Davis S, Aldrich TH, Jones PF, et al. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 1996:87:1161–9.

    Article  CAS  PubMed  Google Scholar 

  53. Folkman J, D’Amore PA. Blood vessel formation: What is its molecular basis? Cell 1996;87:1153–5.

    Article  CAS  PubMed  Google Scholar 

  54. Shalaby F, Ho J, Stanford WL, et al. A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis. Cell 1997;89:961–90.

    Article  Google Scholar 

  55. Risau W. Mechanisms of angiogenesis. Nature 1997;386:671–4.

    Article  CAS  PubMed  Google Scholar 

  56. Hanahan D. Signaling vascular morphogenesis and maintenance. Science 1997;277:48–50.

    Article  CAS  PubMed  Google Scholar 

  57. Dickson MC, Martin JS, Cousins FM, Kulkarni AB, Karlsson S, Akhurst RJ. Defective hematopoiesis and vasculogeneisis in transforming growth-foctor-beta 1 knockout mice. Development 1995;121:1845–54.

    CAS  PubMed  Google Scholar 

  58. Hirschi KK, Rohovsky SA, D’Amore PA. PDGF, TGF-beta, and heterotypic cell–cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol 1998;141:805–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Antonelli-Orlidge A, Saunders KB, Smigh SR, D’Amore PA. An activated form of transforming growth factor beta is produced by cocultures of endothelial cells and pericytes. Proc Natl Acad Sci USA 1989;86:4544–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Morello JP, Plamondon J, Meyrick B, Hoover R, O’Connor-McCourt MD. Transforming growth factor-β receptor expression on endothelial cells: Heterogeneity of type III receptor expression. J Cell Physiol 1995;165:201–11.

    Article  CAS  PubMed  Google Scholar 

  61. Williams MF. The vascular architecture of the rat uterus as influenced by estrogen and progesterone. Am J Anat 1948;83:247–307.

    Article  CAS  PubMed  Google Scholar 

  62. Taipale J, Saharinen J, Keski-Oja J. Extracellular matrix-associated transforming growth factor-beta: Role in cancer cell growth and invasion. Adv Cancer Res 1998;75:87–134.

    Article  CAS  PubMed  Google Scholar 

  63. Mainiero F, Gismondi A, Soriani A, et al. Integrin-mediated Ras-extracellular regulated kinase (ERK) signaling regulated Interferon γ production in human natural killer cells. J Exp Med 1998;188:1267–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Maisonpierre PC, Suri C, Jones PF, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogensis. Science 1997;277:55–60.

    Article  CAS  PubMed  Google Scholar 

  65. Asahara T, Chen D, Takahashi T, et al. Tie-2 receptor ligands, angiopoietin-1 and angiopoeitin-2, modulate VEGF-induced postnatal neovascularization. Circ Res 1998;83:233–40.

    Article  CAS  PubMed  Google Scholar 

  66. Northemann W, Shiels BR, Braciak TA, et al. Structure and acute-phase regulation of the rat α2-macroglobulin gene. Biochemistry 1988;27:9194–203.

    Article  CAS  PubMed  Google Scholar 

  67. Roberts JM, Taylor RN, Musci TJ, Rodgers GM, Hubel CA, McLaughlin MK. Preeclampsia: An endothelial cell disorder. Am J Obstet Gynecol 1989;161:1200–4.

    Article  CAS  PubMed  Google Scholar 

  68. Meekins JW, Pijnenborg R, Hanssens M, McFadyen IR, van Asshe A. A study of placental bed spiral arteries and trophoblast invasion in normal and severe pre-eclamptic pregnancies. Br J Obstet Gynaecol 1994;101:669–74.

    Article  CAS  PubMed  Google Scholar 

  69. Kingdom JC, Kaufmann P. Oxygen and placental villous development: Origins of fetal hypoxia. Placenta 1997;18:613–21.

    Article  CAS  PubMed  Google Scholar 

  70. Genbacev O, Joslin R, Damsky CH, Polliotti BM, Fisher SJ. Hypoxia alters early gestation human cytotrophoblast differentiation/invasion in vitro and models the placental defects that occur in preeclampsia. J Clin Invest 1996;97:540–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Conrad KP, Miles TM, Benyo DF. Circulating levels of immunoreactive cytokines in women with preeclampsia. Am J Reprod Immunol 1998;40:102–11.

    Article  CAS  PubMed  Google Scholar 

  72. Williams MA, Farrand A, Mittendorf R, et al. Maternal second trimester serum tumor necrosis factor-alpha-soluble receptor p55 (sTNFp55) and subsequent risk of preeclampsia. Am J Epidemiol 1999;149:323–9.

    Article  CAS  PubMed  Google Scholar 

  73. Fischer A, Cavazzana-Calvo M, De Saint Basile G, et al. Naturally occurring primary deficiencies of the immune system. Annu Rev Immunol 1997;15:93–124.

    Article  CAS  PubMed  Google Scholar 

  74. Alanen A, Lassila O. Deficient natural killer cell function in preeclampsia. Obstet Gynecol 1982;60:631–4.

    CAS  PubMed  Google Scholar 

  75. Hill JA, Hsia S, Doran DM, Bryans CI. Natural killer cell activity and antibody dependent cell-mediated cytotoxicity in preeclampsia. J Reprod Immunol 1986;9:205–12.

    Article  CAS  PubMed  Google Scholar 

  76. Siklos P, Nemeth-Csoka A, Bartalits L, et al. Decreased killer cell activity in preeclampsia. Gynecol Obstet Invest 1987;23:84–8.

    Article  CAS  PubMed  Google Scholar 

  77. Kaminski K, Wiktor H, Oleszczuk J. Natural cytotoxicity of CD16+ lymphocytes in women with selected states of pregnancy pathology. Ginekol Pol 1995;66:193–7.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Anne Croy DVM, PhD.

Additional information

Supported by awards from the Natural Sciences and Engineering Research Council, Canada, the Ontario Ministry of Agriculture, Food and Rural Affairs, and the Hospital for Sick Children’s Foundation (BAC), and the Ministry of Culture and Higher Education of Iran (AAA).

Helpful discussions with Dr. S. Schneider, Dr. S. Murphy, and Dr. S. Evans of Buffalo and Dr. M. MacLaughlin of Pittsburgh are gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Croy, B.A., Ashkar, A.A., Minhas, K. et al. Can Murine Uterine Natural Killer Cells Give Insights Into the Pathogenesis of Preeclampsia?. Reprod. Sci. 7, 12–20 (2000). https://doi.org/10.1177/107155760000700104

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/107155760000700104

Key words

Navigation