Flexible Interim Analyses in Clinical Trials Using Multistage Adaptive Test Designs

Abstract

Data-dependent interim analyses are a useful tool in confirmatory Phase III or IV clinical research. In particular, redesigning the sample size in an interim analysis based on the results observed to date considerably improves the power of the trial since the best available information at the time is used for the sample size adjustment. In recent years, several methods were proposed that enable a flexible design through the use of adaptive interim analyses while maintaining the type I error rate. In this article, these methods are briefly reviewed. We recommend a strategy that copes well with the demands of practice. Examples illustrate the use of multistage adaptive designs that make it possible to calculate confidence intervals and bias adjusted point estimates.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Jennison C, Turnbull BW. Group Sequential Methods with Applications to Clinical Trials. Boca Raton, London, New York, Washington, DC: Chapman & Hall; 2000.

    Google Scholar 

  2. 2.

    Birkett MA, Day SJ. Internal pilot studies for estimating sample size. Stat Med., 1994;13:2455–2463.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Fleming TR, Harrington DP, O’Brien PC. Designs for group sequential trials. Contr Clin Trials., 1984;5:348–361.

    CAS  Article  Google Scholar 

  4. 4.

    Gould AL. Interim analysis for monitoring clinical trials that do not materially affect the type I error rate. Stat Med., 1992;11:53–66.

    Google Scholar 

  5. 5.

    Gould AL. Planning and revising the sample size for a trial. Stat Med., 1995;14:1039–1051.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Hayre LS. Group sequential sampling with variable group sizes. J R Stat Soc B., 1985;47:90–97.

    Google Scholar 

  7. 7.

    Herson J, Wittes J. The use of interim analysis for sample size adjustment. Drug Inf J., 1993;27:753–760.

    Article  Google Scholar 

  8. 8.

    Jennison C, Turnbull BW. Group sequential tests and repeated confidence intervals. In Ghosh BK, Sen PK, eds. Handbook of Sequential Analysis. New York, NY: Marcel Dekker; 1991;283–311.

    Google Scholar 

  9. 9.

    Kieser M, Friede T. Re-calculating the sample size in internal pilot study designs with control of the type I error rate. Stat Med., 2000;19:901–911.

    CAS  Article  Google Scholar 

  10. 10.

    Kieser M, Friede T. Blinded sample size reestimation in multiarmed clinical trials. Drug Inf J., 2000;34:455–460.

    Article  Google Scholar 

  11. 11.

    Proschan MA, Follmann DA, Waclawiw MA. Effects on assumption violations on type I error rate in group sequential monitoring. Biometrics., 1992;48:1131–1143.

    Article  Google Scholar 

  12. 12.

    Proschan MA, Wittes J. An improved double sampling procedure based on the variance. Biometrics., 2000;56:1183–1187.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Wittes J, Brittain E. The role of internal pilot studies in increasing the efficiency of clinical trials. Stat Med., 1990;9:65–72.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Wittes JT, Schabenberger O, Zucker DM, Brittain E, Proschan M. Internal pilot studies I: Type I error rate of the naive t-test. Stat Med., 1999;18:3481–3491.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Zucker DM, Wittes JT, Schabenberger O, Brittain E. Internal pilot studies II: Comparison of various procedures. Stat Med., 1999;18:3493–3509.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Fisher LD. Self-designing clinical trials. Stat Med., 1998;17:1551–1562.

    CAS  Article  Google Scholar 

  17. 17.

    Shen Y, Fisher L. Statistical inference for self-designing clinical trials with a one-sided hypothesis. Biometrics., 1999;55:190–197.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Bauer P. Multistage testing with adaptive designs. Biom und Inform in Med und Biol., 1989;20:130–148.

    Google Scholar 

  19. 19.

    Bauer P, Könne K. Evaluation of experiments with adaptive interim analyses. Biometrics., 1994;50:1029–1041.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Bauer P, Röhmel J. An adaptive method for establishing a dose-response relationship. Stat Med., 1995;14:1595–1607.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Bauer P, Kieser M. Combining different phases in the development of medical treatments within a single trial. Stat Med., 1999;18:1833–1848.

    CAS  Article  Google Scholar 

  22. 22.

    Bauer P, Brannath W, Posch M. Flexible two-stage designs. Methods of Information in Medicine. Germany, Schattaues; 2001;40:117–121.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Proschan MA, Hunsberger SA. Designed extension of studies based on conditional power. Biometrics., 1995;51:1315–1324.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Coburger S, Wassmer G. Conditional bias adjusted point estimates in adaptive group sequential test designs. Biometrical J. 2001;forthcoming.

    Google Scholar 

  25. 25.

    Chi GYH, Liu Q. The attractiveness of the concept of a prospectively designed two-stage clinical trial. J Biopharm Statist., 1999;9:537–547.

    CAS  Article  Google Scholar 

  26. 26.

    Cui L, Hung HMJ, Wang SJ. Modification of sample size in group sequential clinical trials. Biometrics., 1999;55:853–857.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Denne JS. Estimation following extension of a study on the basis of conditional power. J Biopharm Statist., 2000;10:131–144.

    CAS  Article  Google Scholar 

  28. 28.

    Friede T, Kieser M. A comparison of methods for adaptive sample size adjustment. Stat Med. 2001;20:forthcoming.

  29. 29.

    Hellmich M. Monitoring clinical trials with multiple arms. Biometrics. 2001;forthcoming.

    Google Scholar 

  30. 30.

    Hommel G. Adaptive modifications of hypotheses after an interim analysis. Biometrical J. 2001;43:forthcoming.

  31. 31.

    Kieser M, Bauer P, Lehmacher W. Inference on multiple endpoints in clinical trials with adaptive interim analyses. Biometrical J., 1999;41:261–277.

    Article  Google Scholar 

  32. 32.

    Kropf S, Hommel G, Schmidt U, Brickwedel J, Jepsen MS. Multiple comparison of treatments with stable multivariate tests in a two-stage adaptive design, including a test for non-inferiority. Biometrical J., 2000;42:951–965.

    Article  Google Scholar 

  33. 33.

    Lang T, Auterith A, Bauer P. Trend tests with adaptive scoring. Biometrical J., 2000;42:1007–1020.

    Article  Google Scholar 

  34. 34.

    Lehmacher W, Kieser M, Hothorn L. Sequential and multiple testing for dose-response analysis. Drug Inf J., 2000;34:591–597.

    Article  Google Scholar 

  35. 35.

    Lehmacher W, Wassmer G. Adaptive sample size calculations in group sequential trials. Biometrics., 1999;55:1286–1290.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Liu Q, Chi GYH. On sample size and inference for two-stage adaptive designs. Biometrics. 2001;57:forthcoming.

  37. 37.

    Müller HH, Schäfer H. Adaptive group sequential designs for clinical trials: Combining the advantages of adaptive and of classical group sequential approaches. Biometrics. 2001;57:forthcoming.

  38. 38.

    Neuhäuser M. An adaptive location-scale test. Biometrical J. 2001;forthcoming.

    Google Scholar 

  39. 39.

    Posch M, Bauer P. Adaptive two stage designs and the conditional error function. Biometrical J., 1999;41:689–696.

    Article  Google Scholar 

  40. 40.

    Posch M, Bauer P. Interim analysis and sample size assessment. Biometrics., 2000;56:1170–1176.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Shun Z, Yuan W, Brady WE, Hsu H. Type I error in sample size re-estimations based on observed treatment difference. Stat Med., 2001;20:497–513.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Wassmer G. Multistage adaptive test procedures based on Fisher’s product criterion. Biometrical J., 1999;41:279–293.

    Article  Google Scholar 

  43. 43.

    Wassmer G. A technical note on the power determination for Fisher’s combination test. Biometrical J., 1997;39:831–838.

    Article  Google Scholar 

  44. 44.

    Wassmer G. A comparison of two methods for adaptive interim analyses in clinical trials. Biometrics., 1998;54:696–705.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Wassmer G, Lehmacher W. On the determination of one-sided confidence limits in adaptive interim analysis. Proceedings der 42. Jahrestagung der GMDS, München MMV Medizin. 1997;340–344.

    Google Scholar 

  46. 46.

    Wassmer G. Statistical test procedures for group sequential and adaptive plans in clinical trials. Theoretical concepts and practical solutions with SAS. Köln: Verlag Alexander Mönch; 1999.

    Google Scholar 

  47. 47.

    Wassmer G. Basic concepts of group sequential and adaptive group sequential test procedures. Stat Papers., 2000;41:253–279.

    Article  Google Scholar 

  48. 48.

    Hedges LV, Olkin I. Statistical Methods for Meta-Analysis. New York: Academic Press; 1985.

    Google Scholar 

  49. 49.

    Pocock SJ. Group sequential methods in the design and analysis of clinical trials. Biometrika., 1977;64:191–199.

    Article  Google Scholar 

  50. 50.

    Pocock SJ. Interim analyses for randomized clinical trials: the group sequential approach. Biometrics., 1982;38:153–162.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    O’Brien PC, Fleming TR. A multiple testing procedure for clinical trials. Biometrics., 1979;35:549–556.

    PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Lan KKG, DeMets DL. Discrete sequential boundaries for clinical trials. Biometrika., 1983;70:659–663.

    Article  Google Scholar 

  53. 53.

    Wang SK, Tsiatis AA. Approximately optimal one-parameter boundaries for group sequential trials. Biometrics., 1987;43:193–199.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Wassmer G, Bock W. Tables of Δ-class boundaries for group sequential trials. Biom und Inform in Med und Biol., 1999;30:190–194.

    Google Scholar 

  55. 55.

    DeMets DL, Ware JH. Group sequential methods for clinical trials with a one-sided hypothesis. Biometrika., 1980;67:651–660.

    Article  Google Scholar 

  56. 56.

    DeMets DL, Ware JH. Asymmetric group sequential boundaries for monitoring clinical trials. Biometrika., 1982;69:661–663.

    Article  Google Scholar 

  57. 57.

    McPherson K. On choosing the number of interim analyses in clinical trials. Stat Med., 1982;1:25–36.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    Jennison C, Turnbull BW. Exact calculations for sequential t, chi-square and F tests. Biometrika., 1991;78:133–141.

    Google Scholar 

  59. 59.

    Braitman LE. Statistical estimates and clinical trials. J Biopharm Stat., 1993;3:249–256.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Emerson SS. Computation of the uniform minimum variance unbiased estimator of the normal mean following a group sequential trial. Computers Biomed Res., 1993;26:68–73.

    CAS  Article  Google Scholar 

  61. 61.

    Emerson SS, Fleming TR. Parameter estimation following group sequential hypothesis testing. Biometrika., 1990;77:875–892.

    Article  Google Scholar 

  62. 62.

    Emerson SS, Kittelson JM. A computationally simpler algorithm for the UMVUE of a normal mean following a sequential trial. Biometrics., 1997;53:365–369.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  63. 63.

    Kim K. Point estimation following group sequential tests. Biometrics., 1989;45:613–617.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Liu A, Hall WJ. Unbiased estimation following a group sequential test. Biometrika., 1999;86:71–78.

    Article  Google Scholar 

  65. 65.

    Pinheiro JC, DeMets DL. Estimating and reducing bias in group sequential designs with Gaussian independent increment structure. Biometrika., 1997;84:831–845.

    Article  Google Scholar 

  66. 66.

    Whitehead J. On the bias of maximum likelihood estimation following a sequential test. Biometrika., 1986;73:573–581.

    Article  Google Scholar 

  67. 67.

    Jennison C, Turnbull BW. Interim analysis: the repeated confidence interval approach. J R Stat Soc B., 1989;51:305–361.

    Google Scholar 

  68. 68.

    Phillips A, Ebbutt A, France L, Morgan D. The International Conference on Harmonization guideline “Statistical Principles for Clinical Trials”: Issues in applying the guideline in practice. Drug Inf J., 2000;34:337–348.

    Article  Google Scholar 

  69. 69.

    ICH. Note for Guidance on Statistical Principles for Clinical Trials. (ICH Topic E9, Step 4, CPMP/ICH/363/96). ICH—Technical Coordination. London: European Medicinal Evaluations Agency: 1998.

    Google Scholar 

  70. 70.

    EaSt. Software for the design and interim monitoring of group sequential clinical trials, 2000. Cytel Software Corporation.

    Google Scholar 

  71. 71.

    Wassmer G, Eisebitt R. ADDPLAN 2001: Adaptive Designs—Plans and Analyses. Cologne, Germany: University of Cologne; 2001.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dr. Gernot Wassmer PhD.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wassmer, G., Eisebitt, R. & Coburger, S. Flexible Interim Analyses in Clinical Trials Using Multistage Adaptive Test Designs. Ther Innov Regul Sci 35, 1131–1146 (2001). https://doi.org/10.1177/009286150103500410

Download citation

Key Words

  • Adaptive designs
  • Early stopping
  • Group sequential tests