Advertisement

Reproductive Sciences

, Volume 19, Issue 3, pp 243–252 | Cite as

In Vitro Culture of Mouse Embryos Reduces Differential Gene Expression Between Inner Cell Mass and Trophectoderm

  • G. Giritharan
  • L. Delle Piane
  • A. Donjacour
  • F. J. Esteban
  • J. A. Horcajadas
  • E. Maltepe
  • P. RinaudoEmail author
Original Articles

Abstract

Differences in gene expression and imprinting have been reported, comparing in vivo versus in vitro generated preimplantation embryos. Furthermore, mouse studies have shown that placenta development is altered following in vitro culture. However, the molecular mechanisms underlying these findings are unknown. We therefore isolated trophectoderm (TE) and inner cell mass (ICM) cells from in vivo and in vitro fertilization (IVF) embryos and evaluated their transcriptome using microarrays. We found that the transcriptomes of in vitro produced ICM and TE cells showed remarkably few differences compared to ICM and TE cells of in vivo generated embryos. In vitro fertilization embryos showed a reduced number of TE cells compared to in vivo embryos. In addition, TE of IVF embryos showed significant downregulation of solute transporter genes and of genes involved in placenta formation (Eomesodermin, Socs3) or implantation (Hbegf). In summary, IVF and embryo culture significantly affects the transcriptome of ICM and TE cells.

Keywords

ICM TE gene expression mouse embryo microarray 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Suwinska A, Czolowska R, Ozdzenski W, Tarkowski AK. Blastomeres of the mouse embryo lose totipotency after the fifth cleavage division: expression of Cdx2 and Oct4 and developmental potential of inner and outer blastomeres of 16- and 32-cell embryos. Dev Biol. 2008;322(1):133–144.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Dyce J, George M, Goodall H, Fleming TP. Do trophectoderm and inner cell mass cells in the mouse blastocyst maintain discrete lineages? Development. 1987;100(4):685–698.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Ko MS. Expression profiling of the mouse early embryo: reflections and perspectives. Dev Dyn. 2006;235(9):2437–2448.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Senner CE, Hemberger M. Regulation of early trophoblast differentiation - lessons from the mouse. Placenta. 2010;31(11): 944–950.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Guo G, Huss M, Tong GQ, et al. Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev Cell. 2010;18(4):675–685.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Tanaka TS, Kunath T, Kimber WL, et al. Gene expression profiling of embryo-derived stem cells reveals candidate genes associated with pluripotency and lineage specificity. Genome Res. 2002; 12(12):1921–1928.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Farin CE, Farmer WT, Farin PW. Pregnancy recognition and abnormal offspring syndrome in cattle. Reprod Fertil Dev. 2010; 22(1):75–87.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Schieve LA, Meikle SF, Ferre C, et al. Low and very low birth weight in infants conceived with use of assisted reproductive technology. N Engl J Med. 2002;346(10):731–737.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Hansen M, Kurinczuk JJ, Bower C, Webb S. The risk of major birth defects after intracytoplasmic sperm injection and in vitro fertilization. N Engl J Med. 2002;346(10) 725–730.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    DeBaun MR, Niemitz EL, Feinberg AP. Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am J Hum Genet. 2003;72(1):156–160.CrossRefGoogle Scholar
  11. 11.
    Jackson RA, Gibson KA, Wu YW, Croughan MS. Perinatal outcomes in singletons following in vitro fertilization: a meta-analysis. Obstet Gynecol. 2004;103(3):551–563.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Kovalevsky G, Rinaudo P, Coutifaris C. Do assisted reproductive technologies cause adverse fetal outcomes? Fertil Steril. 2003; 79(6): 1270–1272.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Rinaudo PF, Lamb J. Fetal origins of perinatal morbidity and/or adult disease. Semin Reprod Med. 2008;26(5):436–445.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Rinaudo P, Schultz RM. Effects of embryo culture on global pattern of gene expression in preimplantation mouse embryos. Reproduction. 2004;128(3):301–311.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Rinaudo PF, Giritharan G, Talbi S, Dobson AT, Schultz, RM. Effects of oxygen tension on gene expression in preimplantation mouse embryos. Fertil Steril. 2006;86(suppl 4): 1265: 1252–1265, e1–e36.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Fernandez-Gonzalez R, de Dios Hourcade J, López-Vidriero I, et al. Analysis of gene transcription alterations at the blastocyst stage related to the long-term consequences of in vitro culture in mice. Reproduction. 2009;137(2):271–283.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Giritharan G, Talbi S, Donjacour A, et al. Effect of in vitro fertilization on gene expression and development of mouse preimplantation embryos. Reproduction. 2007;134(1):63–72.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Delle Piane L, Lin W, Liu X, et al. Effect of the method of conception and embryo transfer procedure on mid-gestation placenta and fetal development in an IVF mouse model. Hum Reprod. 2010;25(8):2039–2046.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Adjaye J, Huntriss J, Herwig R, et al. Primary differentiation in the human blastocyst: comparative molecular portraits of inner cell mass and trophectoderm cells. Stem Cells. 2005;23(10):1514–1525.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Solter D, Knowles BB. Immunosurgery of mouse blastocyst. Proc Natl Acad Sci U S A. 1975;72(12):5099–5102.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Imbeaud S, Graudens E, Boulanger V, et al. Towards standardization of RNA quality assessment using user-independent classifiers of microcapillary electrophoresis traces. Nucleic Acids Res. 2005; 33(6):e56.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Hansis C, Grifo JA, Krey LC. Oct-4 expression in inner cell mass and trophectoderm of human blastocysts. Mol Hum Reprod. 2000; 6(11):999–1004.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Barker CS, Griffin C, Dolganov GM, et al. Increased DNA microarray hybridization specificity using sscDNA targets. BMC Genomics. 2005;6:57.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Giritharan G, Li MW, De Sebastiano F, et al. Effect of ICSI on gene expression and development of mouse preimplantation embryos. Hum Reprod. (2010);25(12):3012–3024.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Rossant J, Chazaud C, Yamanaka, Y. Lineage allocation and asymmetries in the early mouse embryo. Philos Trans R Soc Lond. 2003;358(1436): 1341–1348; discussion 1349.CrossRefGoogle Scholar
  26. 26.
    Nichols J, Davidson D, Taga T, et al. Complementary tissuespecific expression of LIF and LIF-receptor mRNAs in early mouse embryogenesis. Mech Dev 1996;57(2):123–131.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Home P, Ray S, Dutta D, et al. GATA3 is selectively expressed in the trophectoderm of peri-implantation embryo and directly regulates Cdx2 gene expression. J Biol Chem. 2009;284(42): 28729–28737.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Roberts RM, Ezashi T, Das P. Trophoblast gene expression: transcription factors in the specification of early trophoblast. Reprod Biol Endocrinol. 2004;2:47.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Constancia M, Hemberger M, Hughes J, et al. Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature. 2002;417(6892):945–948.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Doherty AS, Mann MR, Tremblay KD, Bartolomei MS, Schultz RM. Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol Reprod. 2000;62(6): 1526–1535.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Sutcliffe AG, Peters CJ, Bowdin S, et al. Assisted reproductive therapies and imprinting disorders—a preliminary British survey. Hum Reprod. 2006;21(4):1009–1011.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Levy S, Shoham T. Protein-protein interactions in the tetraspanin web. Physiology (Bethesda). 2005;20:218–224.Google Scholar
  33. 33.
    Peters JL, Dufner-Beattie J, Xu W, et al. Targeting of the mouse Slc39a2 (Zip2) gene reveals highly cell-specific patterns of expression, and unique functions in zinc, iron, and calcium homeostasis. Genesis. 2007;45(6):339–352.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Russ AP, Wattler S, Colledge WH, et al. Eomesodermin is required for mouse trophoblast development and mesoderm formation. Nature. 2000;404(6773):95–99.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Wang H, Dey SK. Roadmap to embryo implantation: clues from mouse models. Nat Rev Genet. 2006;7(3):185–199.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Boyle K, Robb L. The role of SOCS3 in modulating leukaemia inhibitory factor signalling during murine placental development. J Reprod Immunol. 2008;77(1):1–6.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Pant D, Keefer CL. Expression of pluripotency-related genes during bovine inner cell mass explant culture. Cloning Stem Cells. 2009;11(3):355–365.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Xu RH, Chen X, Li DS, et al. BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol. 2002; 20(12):1261–1264.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Pampfer S. Apoptosis in rodent peri-implantation embryos: differential susceptibility of inner cell mass and trophectoderm cell lineages—a review. Placenta. 2000;21(suppl A):S3–S10.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Rossant J, Cross JC. Placental development: lessons from mouse mutants. Nat Rev Genet. 2001;2(7):538–548.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Eaves IA, Wicker LS, Ghandour G, et al. Combining mouse congenic strains and microarray gene expression analyses to study a complex trait: the NOD model of type 1 diabetes. Genome Res. 2002;12(2):232–243.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Shendure J. The beginning of the end for microarrays? Nat Methods. 2008;5(7):585–587.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Society for Reproductive Investigation 2012

Authors and Affiliations

  • G. Giritharan
    • 1
  • L. Delle Piane
    • 1
    • 2
  • A. Donjacour
    • 1
  • F. J. Esteban
    • 3
  • J. A. Horcajadas
    • 4
  • E. Maltepe
    • 1
  • P. Rinaudo
    • 1
    • 5
    Email author
  1. 1.Department of Obstetric and GynecologyUniversity of California, San FranciscoSan FranciscoUSA
  2. 2.Reproductive Medicine and IVF Unit, Department of Obstetrical and Gynecological SciencesUniversity of TorinoTorinoItaly
  3. 3.Department of Experimental Biology, Systems Biology UnitUniversity of JaenJaenSpain
  4. 4.Fundacion IVI and iGenomix, Araid at I + CSHospital Miguel ServetZaragozaSpain
  5. 5.Division of Reproductive Endocrinology and InfertilityUniversity of California, San FranciscoSan FranciscoUSA

Personalised recommendations