Advertisement

Reproductive Sciences

, Volume 19, Issue 6, pp 607–614 | Cite as

Postnatal Development of Metabolic Flexibility and Enhanced Oxidative Capacity After Prenatal Undernutrition

  • Amy M. Norman
  • Jennifer L. Miles-Chan
  • Nichola M. Thompson
  • Bernhard H. Breier
  • Korinna HuberEmail author
Original Articles

Abstract

Metabolic flexibility is the body’s ability to adapt to changing energy demand and nutrient supply. Maternal undernutrition causes growth restriction at birth and subsequent obesity development. Intriguingly, metabolic flexibility is maintained due to adaptations of muscle tissue. The aim of the present study was to investigate developmental pathways of these adaptive changes. Wistar rats received standard chow at either ad libitum (AD) or 30% of ad libitum intake (UN) throughout pregnancy. At all ages, metabolic status indicated similar insulin sensitivity in AD and UN offspring despite the development of adiposity in UN offspring at weaning. Type IIA fiber size was reduced in soleus muscle of UN offspring at weaning and they had a higher percentage of type I fibers in adulthood with a concomitantly higher oxidative capacity. Plasticity of muscle was present during the postnatal period and proposes novel pathways for the dynamic development of metabolic flexibility throughout postnatal life.

Keywords

prenatal nutrition postnatal development muscle structure metabolic flexibility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nathanielsz PW, Thornburg KL. Fetal programming: from gene to functional systems-an overview. J Physiol. 2003;547:(pt 1)3–4.CrossRefGoogle Scholar
  2. 2.
    McMillen IC, Adam CL, Mühlhäuser BS. Early origins of obesity: programming the appetite regulatory system. J Physiol. 2005;565(pt 1):9–17.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Phillips DIW, Jones A. Fetal programming of autonomic and HPA function: do people who were small babies have enhanced stress responses. J Physiol. 2005;572(pt 1):45–50.Google Scholar
  4. 4.
    Sayer AA, Cooper C. Fetal programming of body composition and musculoskeletal development. Early Hum Dev. 2005;81(9): 735–744.PubMedCrossRefGoogle Scholar
  5. 5.
    Symonds ME, Stephenson T, Gardner DS, Budge H. Long-term effects of nutritional programming of the embryo and fetus: mechanisms and critical windows. Reprod Fertil Dev. 2007; 19(1):53–63.PubMedCrossRefGoogle Scholar
  6. 6.
    Green A, Rozance P, Limesand S. Consequences of a compromised intrauterine environment on islet function. J Endocrinol. 2010; 205(3):211–224.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Thompson NM, Norman AM, Donkin SS, et al. Prenatal and postnatal pathways to obesity: different underlying mechanisms, different metabolic outcomes. Endocrinology. 2007;148(5):2345–2354.PubMedCrossRefGoogle Scholar
  8. 8.
    Miles JL, Huber K, Thompson NM, Davison M, Breier BH. Moderate daily exercise activates metabolic flexibility to prevent prenatally induced obesity. Endocrinology. 2009;150(1):179–186.PubMedCrossRefGoogle Scholar
  9. 9.
    Huber K, Miles JL, Norman AM, Thompson NM, Davison M, Breier BH. Prenatally induced changes in muscle structure and metabolic function facilitate exercise-induced obesity prevention. Endocrinology. 2009;150(9):4135–4144.PubMedCrossRefGoogle Scholar
  10. 10.
    Bauer R, Gedrange T, Bauer K, Walter B. Intrauterine growth restriction induces increased capillary density and accelerated type I fiber maturation in newborn pig skeletal muscles. J Perinat Med. 2006;34(3):235–242.PubMedCrossRefGoogle Scholar
  11. 11.
    Wilson SJ, Ross JJ, Harris AJ. A critical period for formation of secondary myotubes defined by prenatal undernourishment in rats. Development. 1988;102(4):815–821.PubMedGoogle Scholar
  12. 12.
    Pagel-Langenickel I, Bao J, Pang L, Sack MN. The role of mitochondria in the pathophysiology of skeletal muscle insulin resistance. Endocr Rev. 2010;31(1):25–51.PubMedCrossRefGoogle Scholar
  13. 13.
    Punkt K, Naupert A, Asmussen G. Differentiation of rat skeletal muscle fibres during development and ageing. Acta Histochem. 2004;106(2):145–154.PubMedCrossRefGoogle Scholar
  14. 14.
    Zhu MJ, Ford SP, Means WJ, Hess BW, Nathanielsz PW, Du M. Maternal nutrient restriction affects properties of skeletal muscle in offspring. J Physiol. 2006;575(pt 1):241–250.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Bedi KS, Birzgalis AR, Mahon M, Smart JL, Wareham AC. Early life undernutrition in rats. 1. Quantitative histology of skeletal muscles from underfed young and refed adult animals. Br J Nutr. 1982; 47(3):417–431.PubMedCrossRefGoogle Scholar
  16. 16.
    Storlien L, Oakes ND, Kelley DE. Metabolic flexibility. Proc Nutr Soc. 2004;63(2):363–368.PubMedCrossRefGoogle Scholar
  17. 17.
    Phielix E, Mensink M. Type 2 diabetes mellitus and skeletal muscle metabolic function. Physiol Behav. 2008;94(2):252–258.PubMedCrossRefGoogle Scholar
  18. 18.
    Desai M, Gayle D, Babu J, Ross MG. Programmed obesity in intrauterine growth-restricted newborns: modulation by newborn nutrition. Am J Physiol Regul Integr Comp Physiol. 2005;288(1): R91–R96.PubMedCrossRefGoogle Scholar
  19. 19.
    Lane RH, Maclennan NK, Daood MJ, et al. IUGR alters postnatal rat skeletal muscle peroxisome proliferator-activated receptor-(gamma) coactivator 1 gene expression in a fibre-specific manner. Pediatric Res. 2003;53(6):994–1000.CrossRefGoogle Scholar
  20. 20.
    Roehrig KL, Allred JB. Direct enzymatic procedure for the determination of liver glycogen. Anal Biochem. 1974;58(2): 414–421.PubMedCrossRefGoogle Scholar
  21. 21.
    Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259): 680–685.PubMedCrossRefGoogle Scholar
  22. 22.
    Newsholme EA, Crabtree B. Maximum catalytic activity of some key enzymes in provision of physiologically useful information about metabolic fluxes. J Exp Zool. 1986;239(2): 159–167.PubMedCrossRefGoogle Scholar
  23. 23.
    Woodall SM, Breier BH, Johnston BM, Gluckman PD. A model of intrauterine growth retardation caused by chronic maternal undernutrition in the rat: effects on the somatotrophic axis and postnatal growth. J Endocrinol. 1996;150(2):231–242.PubMedCrossRefGoogle Scholar
  24. 24.
    Jahan S, Zinnat R, Hassan Z, Biswas KB, Habib SH. Gender differences in serum leptin concentrations from umbilical cord blood of newborn infants born to nondiabetic, gestational diabetic and type-2 diabetic mothers. Int J Diabetes Dev Ctries. 2009;29(4):155–158.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Nakatani T, Nakashima T, Kita T, et al. Cell size and oxidative enzyme activity of different types of fibers in different regions of the rat plantaris and tibialis anterior muscles. Jpn J Physiol. 2000;50(4):413–418.PubMedCrossRefGoogle Scholar
  26. 26.
    Lunde IG, Ekmark M, Rana ZA, Buonanno A, Gundersen K. PPARdelta expression is influenced by muscle activity and induces slow muscle properties in adult rat muscles after somatic gene transfer. J Physiol. 2007;582(pt 3):1277–1287.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Krechowec SO, Vickers M, Gertler A, Breier BH. Prenatal influences on leptin sensitivity and susceptibility to diet-induced obesity. J Endocrinol. 2006;189(2):355–363.PubMedCrossRefGoogle Scholar
  28. 28.
    Vickers MH. Developmental programming and adult obesity: the role of leptin. Curr Opin Endocrinol Diabetes Obes. 2007;14(1): 17–22.PubMedCrossRefGoogle Scholar
  29. 29.
    Vickers MH, Gluckman PD, Coveny AH, et al. The effect of neonatal treatment on postnatal weight gain in male rats is dependent on maternal nutritional status during pregnancy. Endocrinology. 2008;149(4):1906–1913.PubMedCrossRefGoogle Scholar
  30. 30.
    Briana DD, Malamitsi-Puchner A. Intrauterine growth restriction and adult disease: the role of adipocytokines. Eur J Endocrinol. 2009;160(3):337–347.PubMedCrossRefGoogle Scholar
  31. 31.
    Yu T, Luo G, Zhang L, Wu J, Zhang H, Yang G. Leptin promotes proliferation and inhibits differentiation in porcine skeletal myoblasts. Biosci Biotechnol Biochem. 2008;72(1):13–21.PubMedCrossRefGoogle Scholar
  32. 32.
    Rooney K, Ozanne SE. Maternal over-nutrition and offspring obesity predisposition: targets for preventative interventions. Int J Obesity. 2011;35(7):1–8.CrossRefGoogle Scholar

Copyright information

© Society for Reproductive Investigation 2012

Authors and Affiliations

  • Amy M. Norman
    • 1
  • Jennifer L. Miles-Chan
    • 2
  • Nichola M. Thompson
    • 3
  • Bernhard H. Breier
    • 4
  • Korinna Huber
    • 5
    Email author
  1. 1.Department of Surgery, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
  2. 2.Institute of Physiology, Department of MedicineUniversity of FribourgFribourgSwitzerland
  3. 3.Discipline of Physiology, School of Medical Sciences, Faculty of Health SciencesThe University of AdelaideAdelaideAustralia
  4. 4.Institute of Food, Nutrition and Human HealthMassey University, Albany CampusAucklandNew Zealand
  5. 5.Department of PhysiologyUniversity of Veterinary MedicineHannoverGermany

Personalised recommendations