Reproductive Sciences

, Volume 19, Issue 5, pp 474–482 | Cite as

A Standardized Template for Clinical Studies in Preterm Birth

  • Leslie MyattEmail author
  • David A. Eschenbach
  • Stephen J. Lye
  • Sam Mesiano
  • Amy P. Murtha
  • Scott M. Williams
  • Craig E. Pennell
  • International Preterm Birth Collaborative (PREBIC) Pathways and Systems Biology Working Groups
Original Articles



Preterm birth is a major societal and economic problem accounting for 80 to 90% of neonatal morbidity and mortality worldwide. It is recognized as a complex multifactorial condition comprising several distinct clinical phenotypes with different underlying etiologies. As animal models are expensive and fail to mimic the biology of spontaneous preterm birth in humans, understanding the pathophysiology requires detailed clinical studies. Meta-analyses and clinical translation of data, however, are limited by heterogeneity of study design and size, publication and reporting biases, definition of patient groups, and a lack of standard universal definitions. This article provides a harmonized open-source template for designing clinical studies addressing preterm birth.


Recommendations are made for clinical definitions, choice and assignment to preterm birth phenotypes, selection of enriched populations and control pregnancies, and potential confounding factors. In addition, recommendations are made for study design, sample size and power calculations, the minimal data sets needed for any study of preterm birth, and the optimal data set of an ideal study.


Recommended patient phenotypes are infection, uterine overdistension, hemorrhage, stress (either maternal or fetal), and idiopathic. Confounding factors include medical conditions, obesity, antenatal glucocorticoids, multifetal pregnancies, and fetal sex. Guidelines regarding study design, sample size, and clinical data acquisition are provided to serve as a universal template for preterm birth studies.


Adoption of a harmonized template will allow generation of protocols and studies with a basic degree of compatibility and will allow data to be compared, and samples and data sets to be combined for meaningful meta-analyses.


preterm birth phenotypes infection hemorrhage stress 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beck S, Wojdyla D, Say L, et al. The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity. Bull World Health Organ. 2010;88(1):31–38.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Lawn JE, Gravett MG, Nunes TM, Rubens CE, Stanton C. Global report on preterm birth and stillbirth (1 of 7): definitions, description of the burden and opportunities to improve data. BMC Pregnancy Childbirth. 2010;10(suppl 1):S1.Google Scholar
  3. 3.
    Martin JA, Kochanek KD, Strobino DM, Guyer B, MacDorman MF. Annual summary of vital statistics–2003. Pediatrics. 2005;115(3):619–634.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Damus K. Prevention of preterm birth: a renewed national priority. Curr Opin Obstet Gynecol. 2008;20(6):590–596.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Barker DJ. The developmental origins of adult disease. J Am Coll Nutr. 2004;23(6 suppl):588S–595S.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Petrini JR, Dias T, McCormick MC, Massolo ML, Green NS, Escobar GJ. Increased risk of adverse neurological development for late preterm infants. J Pediatr. 2009;154(2):169–176.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Bhattacharya S, Raja EA, Mirazo ER, Campbell DM, Lee AJ, Norman JE. Inherited predisposition to spontaneous preterm delivery. Obstet Gynecol. 2010;115(6):1125–1133.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Boyd HA, Poulsen G, Wohlfahrt J, Murray JC, Feenstra B, Melbye M. Maternal contributions to preterm delivery. Am J Epidemiol. 2009;170(11):1358–1364.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Porter TF, Fraser AM, Hunter CY, Ward RH, Varner MW. The risk of preterm birth across generations. Obstet Gynecol. 1997;90(1):63–67.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Svensson AC, Sandin S, Cnattingius S, et al. Maternal effects for preterm birth: a genetic epidemiologic study of 630,000 families. Am J Epidemiol. 2009;170(11):1365–1372.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Selling KE, Carstensen J, Finnstrom O, Sydsjo G. Intergenerational effects of preterm birth and reduced intrauterine growth: a population-based study of Swedish mother-offspring pairs. BJOG. 2006;113(4):430–440.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Weinberg CR, Shi M. The genetics of preterm birth: using what we know to design better association studies. Am J Epidemiol. 2009;170(11):1373–1381.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Mercer BM, Goldenberg RL, Moawad AH, et al. The preterm prediction study: effect of gestational age and cause of preterm birth on subsequent obstetric outcome. National institute of child health and human development maternal-fetal medicine units network. Am J Obstet Gynecol. 1999;181(5 pt 1):1216–1221.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Lang JM, Lieberman E, Cohen A. A comparison of risk factors for preterm labor and term small-for-gestational-age birth. Epidemiology. 1996;7(4):369–376.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Little J. Invited commentary: maternal effects in preterm birth–effects of maternal genotype, mitochondrial DNA, imprinting, or environment? Am J Epidemiol. 2009;170(11):1382–1385.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Plunkett J, Feitosa MF, Trusgnich M, et al. Mother’s genome or maternally-inherited genes acting in the fetus influence gestational age in familial preterm birth. Hum Hered. 2009;68(3):209–219.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Anum EA, Springel EH, Shriver MD, Strauss JF 3rd. Genetic contributions to disparities in preterm birth. Pediatr Res. 2009;65(1):1–9.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Velez DR, Fortunato SJ, Williams SM, Menon R. Interleukin-6 (IL-6) and receptor (IL6-R) gene haplotypes associate with amniotic fluid protein concentrations in preterm birth. Hum Mol Genet. 2008;17(11):1619–1630.CrossRefGoogle Scholar
  19. 19.
    Velez DR, Fortunato SJ, Thorsen P, Lombardi SJ, Williams SM, Menon R. Preterm birth in Caucasians is associated with coagulation and inflammation pathway gene variants. PLoS One. 2008;3(9):e3283.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Ryckman KK, Morken NH, White MJ, et al. Maternal and fetal genetic associations of PTGER3 and PON1 with preterm birth. PLoS One. 2010;5(2):e9040.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Menon R. Race and genetics in understanding the complexities of preterm birth. Expert Rev Obstet Gynecol. 2009;4(6):695–704.CrossRefGoogle Scholar
  22. 22.
    Nguyen TH, Larsen T, Engholm G, Moller H. Evaluation of ultrasound-estimated date of delivery in 17,450 spontaneous singleton births: do we need to modify Naegele’s rule? Ultrasound Obstet Gynecol. 1999;14(1):23–28.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    World Health Organization. The Prevention of Perinatal Mortality and Morbidity. WHO Technical Report Series. Geneva, Switzerland; 1970.Google Scholar
  24. 24.
    Bowen JM, Chamley L, Keelan JA, Mitchell MD. Cytokines of the placenta and extra-placental membranes: roles and regulation during human pregnancy and parturition. Placenta. 2002;23(4):257–273.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Kelly RW. Inflammatory mediators and parturition. Rev Reprod. 1996;1(2):89–96.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Romero R, Gomez R, Ghezzi F, et al. A fetal systemic inflammatory response is followed by the spontaneous onset of preterm parturition. Am J Obstet Gynecol. 1998;179(1):186–193.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Romero R, Gotsch F, Pineles B, Kusanovic JP. Inflammation in pregnancy: its roles in reproductive physiology, obstetrical complications, and fetal injury. Nutr Rev. 2007;65(12 pt 2):S194–202.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Goldenberg RL, Hauth JC, Andrews WW. Intrauterine infection and preterm delivery. N Engl J Med. 2000;342(20):1500–1507.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371(9606):75–84.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Lee SE, Romero R, Park CW, Jun JK, Yoon BH. The frequency and significance of intraamniotic inflammation in patients with cervical insufficiency. Am J Obstet Gynecol. 2008;198(6):633, e631–e638.CrossRefGoogle Scholar
  31. 31.
    Yoon BH, Romero R, Moon JB, et al. Clinical significance of intra-amniotic inflammation in patients with preterm labor and intact membranes. Am J Obstet Gynecol. 2001;185(5):1130–1136.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Boggess KA. Pathophysiology of preterm birth: emerging concepts of maternal infection. Clin Perinatol. 2005;32(3):561–569.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Klein LL, Gibbs RS. Infection and preterm birth. Obstet Gynecol Clin North Am. 2005;32(3):397–410.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Park CW, Moon KC, Park JS, Jun JK, Romero R, Yoon BH. The involvement of human amnion in histologic chorioamnionitis is an indicator that a fetal and an intra-amniotic inflammatory response is more likely and severe: clinical implications. Placenta. 2009;30(1):56–61.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    DiGiulio DB, Romero R, Amogan HP, et al. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation. PLoS One. 2008;3(8):e3056.CrossRefGoogle Scholar
  36. 36.
    Hillier SL, Witkin SS, Krohn MA, Watts DH, Kiviat NB, Eschenbach DA. The relationship of amniotic fluid cytokines and preterm delivery, amniotic fluid infection, histologic chorioamnionitis, and chorioamnion infection. Obstet Gynecol. 1993;81(6):941–948.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Adams Waldorf KM, Rubens CE, Gravett MG. Use of nonhuman primate models to investigate mechanisms of infection-associated preterm birth. BJOG. 2011;118(2):136–144.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Gravett MG, Adams KM, Sadowsky DW, et al. Immunomodulators plus antibiotics delay preterm delivery after experimental intraamniotic infection in a nonhuman primate model. Am J Obstet Gynecol. 2007;197(5):518 e511–e518.CrossRefGoogle Scholar
  39. 39.
    Redline RW. Placental pathology: a systematic approach with clinical correlations. Placenta. 2008;29(suppl A):S86–S91.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Gravett MG, Novy MJ, Rosenfeld RG, et al. Diagnosis of intraamniotic infection by proteomic profiling and identification of novel biomarkers. JAMA. 2004;292(4):462–469.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Fichorova RN, Onderdonk AB, Yamamoto H, et al. Maternal microbe-specific modulation of inflammatory response in extremely low-gestational-age newborns. MBio. 2011;2(1):e00280–e00210.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Yoon BH, Romero R, Park JS, et al. The relationship among inflammatory lesions of the umbilical cord (funisitis), umbilical cord plasma interleukin 6 concentration, amniotic fluid infection, and neonatal sepsis. Am J Obstet Gynecol. 2000;183(5):1124–1129.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Murtha AP, Sinclair T, Hauser ER, Swamy GK, Herbert WN, Heine RP. Maternal serum cytokines in preterm premature rupture of membranes. Obstet Gynecol. 2007;109(1):121–127.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Gibbs RS, Duff P. Progress in pathogenesis and management of clinical intraamniotic infection. Am J Obstet Gynecol. 1991;164(5 pt 1):1317–1326.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Shynlova O, Kwong R, Lye SJ. Mechanical stretch regulates hypertrophic phenotype of the myometrium during pregnancy. Reproduction. 2010;139(1):247–253.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Lye SJ, Mitchell J, Nashman N, et al. Role of mechanical signals in the onset of term and preterm labor. Front Horm Res. 2001;27:165–178.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Gardner MO, Goldenberg RL, Cliver SP, Tucker JM, Nelson KG, Copper RL. The origin and outcome of preterm twin pregnancies. Obstet Gynecol. 1995;85(4):553–557.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Shynlova O, Williams SJ, Draper H, White BG, MacPhee DJ, Lye SJ. Uterine stretch regulates temporal and spatial expression of fibronectin protein and its alpha 5 integrin receptor in myometrium of unilaterally pregnant rats. Biol Reprod. 2007;77(5):880–888.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Elovitz MA, Baron J, Phillippe M. The role of thrombin in preterm parturition. Am J Obstet Gynecol. 2001;185(5):1059–1063.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Chaiworapongsa T, Espinoza J, Yoshimatsu J, et al. Activation of coagulation system in preterm labor and preterm premature rupture of membranes. J Matern Fetal Neonatal Med. 2002;11(6):368–373.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Rosen T, Kuczynski E, O’Neill LM, Funai EF, Lockwood CJ. Plasma levels of thrombin-antithrombin complexes predict preterm premature rupture of the fetal membranes. J Matern Fetal Med. 2001;10(5):297–300.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Elovitz MA, Ascher-Landsberg J, Saunders T, Phillippe M. The mechanisms underlying the stimulatory effects of thrombin on myometrial smooth muscle. Am J Obstet Gynecol. 2000;183(3):674–681.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Moore RM, Schatz F, Kumar D, et al. Alpha-lipoic acid inhibits thrombin-induced fetal membrane weakening in vitro. Placenta. 2010;31(10):886–892.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Owen J, Iams JD. What we have learned about cervical ultrasound. Semin Perinatol. 2003;27(3):194–203.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Hobel C, Culhane J. Role of psychosocial and nutritional stress on poor pregnancy outcome. J Nutr. 2003;133(5 suppl 2):1709S–1717S.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Hobel CJ, Goldstein A, Barrett ES. Psychosocial stress and pregnancy outcome. Clin Obstet Gynecol. 2008;51(2):333–348.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Mancuso RA, Schetter CD, Rini CM, Roesch SC, Hobel CJ. Maternal prenatal anxiety and corticotropin-releasing hormone associated with timing of delivery. Psychosom Med. 2004;66(5):762–769.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Riley SC, Walton JC, Herlick JM, Challis JR. The localization and distribution of corticotropin-releasing hormone in the human placenta and fetal membranes throughout gestation. J Clin Endocrinol Metab. 1991;72(5):1001–1007.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Power ML, Schulkin J. Functions of corticotropin-releasing hormone in anthropoid primates: from brain to placenta. Am J Hum Biol. 2006;18(4):431–447.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Schulkin J. Corticotropin-releasing hormone signals adversity in both the placenta and the brain: regulation by glucocorticoids and allostatic overload. J Endocrinol. 1999;161(3):349–356.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Hobel CJ, Arora CP, Korst LM. Corticotrophin-releasing hormone and CRH-binding protein. Differences between patients at risk for preterm birth and hypertension. Ann N Y Acad Sci. 1999;897(1):54–65.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    McLean M, Bisits A, Davies J, et al. Predicting risk of preterm delivery by second-trimester measurement of maternal plasma corticotropin-releasing hormone and alpha-fetoprotein concentrations. Am J Obstet Gynecol. 1999;181(1):207–215.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Hendler I, Goldenberg RL, Mercer BM, et al. The preterm prediction study: association between maternal body mass index and spontaneous and indicated preterm birth. Am J Obstet Gynecol. 2005;192(3):882–886.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    McDonald SD, Han Z, Mulla S, Beyene J. Overweight and obesity in mothers and risk of preterm birth and low birth weight infants: systematic review and meta-analyses. BMJ. 2010;341:c3428.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Torloni MR, Betran AP, Daher S, et al. Maternal BMI and preterm birth: a systematic review of the literature with meta-analysis. J Matern Fetal Neonatal Med. 2009;22(11):957–970.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Zhu XO, Yang Z, Guo CM, et al. Paradoxical stimulation of cyclooxygenase-2 expression by glucocorticoids via a cyclic AMP response element in human amnion fibroblasts. Mol Endocrinol. 2009;23(11):1839–1849.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Clifton VL. Review: sex and the human placenta: mediating differential strategies of fetal growth and survival. Placenta. 2010;31(suppl):S33–S39.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Yeganegi M, Leung CG, Martins A, et al. Lactobacillus rhamnosus GR-1 stimulates colony-stimulating factor 3 (granulocyte) (CSF3) output in placental trophoblast cells in a fetal sex-dependent manner. Biol Reprod. 2011;84(1):18–25.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Cooperstock M, Campbell J. Excess males in preterm birth: interactions with gestational age, race, and multiple birth. Obstet Gynecol. 1996;88(2):189–193.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Pennell CE, Jacobsson B, Williams SM, et al. Genetic epidemiologic studies of preterm birth: guidelines for research. Am J Obstet Gynecol. 2007;196(2):107–118.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Girotti M, Zingg HH. Gene expression profiling of rat uterus at different stages of parturition. Endocrinology. 2003;144(6):2254–2265.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Song J, Zhang X, Qi Z, et al. Cloning and characterization of a calcium-activated chloride channel in rat uterus. Biol Reprod. 2009;80(4):788–794.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Mittal P, Romero R, Tarca AL, et al. Characterization of the myometrial transcriptome and biological pathways of spontaneous human labor at term. J Perinat Med. 2010;38(6):617–643.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Tattersall M, Engineer N, Khanjani S, et al. Pro-labour myometrial gene expression: are preterm labour and term labour the same? Reproduction. 2008;135(4):569–579.CrossRefGoogle Scholar
  75. 75.
    Gibb W, Challis JR. Mechanisms of term and preterm birth. J Obstet Gynaecol Can. 2002;24(11):874–883.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Myatt L, Lye SJ. Expression, localization and function of prostaglandin receptors in myometrium. Prostaglandins Leukot Essent Fatty Acids. 2004;70(2):137–148.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Society for Reproductive Investigation 2012

Authors and Affiliations

  • Leslie Myatt
    • 1
    Email author
  • David A. Eschenbach
    • 2
  • Stephen J. Lye
    • 3
  • Sam Mesiano
    • 4
  • Amy P. Murtha
    • 5
  • Scott M. Williams
    • 6
  • Craig E. Pennell
    • 7
  • International Preterm Birth Collaborative (PREBIC) Pathways and Systems Biology Working Groups
  1. 1.Department of Obstetrics and GynecologyUniversity of Texas Health Science Center San AntonioSan AntonioUSA
  2. 2.Department of Obstetrics and GynecologyUniversity of WashingtonSeattleUSA
  3. 3.Department of Obstetrics and GynecologyMt Sinai HospitalTorontoCanada
  4. 4.Department of Reproductive BiologyCase Western Reserve UniversityClevelandUSA
  5. 5.Department of Obstetrics and GynecologyDuke University Medical CenterDurhamUSA
  6. 6.Department of Molecular Physiology and BiophysicsVanderbilt University School of MedicineNashvilleUSA
  7. 7.School of Women’s and Infants’ HealthThe University of Western AustraliaPerthAustralia

Personalised recommendations