Valproic Acid and Progestin Inhibit Lesion Growth and Reduce Hyperalgesia in Experimentally Induced Endometriosis in Rats


Accumulating evidence suggests that endometriosis is an epigenetic disease. This study was designed to evaluate the effect of valproic acid (VPA) and progesterone (P4) in a rat model of endometriosis on serum tumor necrosis factor-α (TNF-α) levels, hot plate and tail-flick latencies, lesion size, and body weight. We used 77 adult female rats, and endometriosis was induced by autotransplanting pieces of uterus (ENDO) or fat (SHAM) to the pelvic cavity. The BLANK group received no surgery. After 2 weeks, the ENDO group was further divided, randomly, into 5 groups, receiving, respectively, treatment with low- and high-dose VPA, P4 alone, VPA + P4, and no treatment. The SHAM rats received no treatment. The BLANK rats were further divided into 2 groups, one received VPA treatment and the other, no treatment. After 4 weeks, all rats were sacrificed. Response latency in hot plate and tail-flick tests, body weight, and serum TNF-α levels were measured before the surgery, before and after the treatment, along with lesion size. We found that induced endometriosis reduced response latency. ENDO rats receiving VPA and/or P4 treatment had significantly reduced lesion size as compared with untreated ones, and had significantly improved response to noxious thermal stimuli. They also had significantly increased weight gain. Serum TNF-α levels increased following surgery but eventually decreased regardless of treatment or not. In conclusion, VPA is well tolerated. Treatment with VPA significantly reduces lesion growth and improves sensitivity to nocifensive stimuli. The improvement is specific to endometriosis-induced hyperalgesia. Thus, histone deacetylase inhibitors may be a promising therapeutics for treating endometriosis.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 510

This is the net price. Taxes to be calculated in checkout.


  1. 1.

    Giudice LC, Kao LC. Endometriosis. Lancet. 2004;364(9447):1789–1799.

  2. 2.

    Olive DL, Lindheim SR, Pritts EA. New medical treatments for endometriosis. Best Pract Res Clin Obstet Gynaecol. 2004;18(2):319–328.

  3. 3.

    Olive DL, Pritts EA. Treatment of endometriosis. N Engl J Med.2001;345(4):266–275.

  4. 4.

    Nothnick WB, D’Hooghe TM. Medical management of endometriosis: novel targets and approaches towards the development of future treatment regimes. Gynecol Obstet Invest. 2003;55(4):189–198.

  5. 5.

    Wu Y, Halverson G, Basir Z, Strawn E, Yan P, Guo SW. Aberrant methylation at HOXA10 may be responsible for its aberrant expression in the endometrium of patients with endometriosis. Am J Obstet Gynecol. 2005;193(2):371–380.

  6. 6.

    Wu Y, Starzinski-Powitz A, Guo SW. Prolonged stimulation with tumor necrosis factor-alpha induced partial methylation at PR-B promoter in immortalized epithelial-like endometriotic cells. Fertil Steril. 2008;90(1):234–237.

  7. 7.

    Wu Y, Strawn E, Basir Z, Halverson G, Guo SW. Aberrant expression of deoxyribonucleic acid methyltransferases DNMT1, DNMT3A, and DNMT3B in women with endometriosis. Fertil Steril. 2007;87(1):24–32.

  8. 8.

    Ailawadi RK, Jobanputra S, Kataria M, Gurates B, Bulun SE. Treatment of endometriosis and chronic pelvic pain with letrozole and norethindrone acetate: a pilot study. Fertil Steril. 2004;81(2):290–296.

  9. 9.

    Xue Q, Lin Z, Cheng YH, Huang CC, et al. Promoter methylation regulates estrogen receptor 2 in human endometrium and endometriosis. Biol Reprod. 2007;77(4):681–687.

  10. 10.

    Xue Q, Lin Z, Yin P, et al. Transcriptional activation of steroidogenic factor-1 by hypomethylation of the 5′ CpG island in endometriosis. J Clin Endocrinol Metab. 2007;92(8):3261–3267.

  11. 11.

    Kim JJ, Taylor HS, Lu Z, et al. Altered expression of HOXA10 in endometriosis: potential role in decidualization. Mol Hum Reprod. 2007;13(5):323–332.

  12. 12.

    Lee B, Du H, Taylor HS. Experimental murine endometriosis induces DNA methylation and altered gene expression in eutopic endometrium. Biol Reprod. 2009;80(1):79–85.

  13. 13.

    Szczepanska M, Wirstlein P, Luczak M, Jagodzinski PP, Skrzypczak J. Reduced expression of HOXA10 in the midluteal endometrium from infertile women with minimal endometriosis. Biomed Pharmacother. 2010;64(10):697–705.

  14. 14.

    Izawa M, Taniguchi F, Uegaki T, et al. Demethylation of a non-promoter cytosine-phosphate-guanine island in the aromatase gene may cause the aberrant up-regulation in endometriotic tissues. Fertil Steril. 2010;95(1):33–39.

  15. 15.

    Borghese B, Barbaux S, Mondon F, et al. Research resource: genome-wide profiling of methylated promoters in endometriosis reveals a subtelomeric location of hypermethylation. Mol Endocrinol. 2010;24(9):1872–1885.

  16. 16.

    Guo SW. Epigenetics of endometriosis. Mol Hum Reprod. 2009;15(10):587–607.

  17. 17.

    Guo SW. Emerging drugs for endometriosis. Expert Opin Emerg Drugs. 2008;13(4):547–571.

  18. 18.

    Nie J, Liu XS, Guo SW. Promoter hypermethylation of progesterone receptor isoform B (PR-B) in Adenomyosis and its rectification by a histone deacetylase inhibitor and a demethylation agent. Reprod Sci. 2010;17(11):995–1005.

  19. 19.

    Wu Y, Guo SW. Inhibition of proliferation of endometrial stromal cells by trichostatin A, RU486, CDB-2914, N-acetylcysteine, and ICI 182780. Gynecol Obstet Invest. 2006, 62(4):193–205.

  20. 20.

    Wu Y, Guo SW. Histone deacetylase inhibitors trichostatin A and valproic acid induce cell cycle arrest and p21 expression in immortalized human endometrial stromal cells. Eur J Obstet Gynecol Reprod Biol. 2008, 137(2):198–203.

  21. 21.

    Wu Y, Starzinski-Powitz A, Guo SW. Trichostatin A, a histone deacetylase inhibitor, attenuates invasiveness and reactivates E-cadherin expression in immortalized endometriotic cells. Reprod Sci. 2007;14(4):374–382.

  22. 22.

    Wu Y, Starzinski-Powitz A, Guo SW. Constitutive and tumor necrosis factor-alpha-stimulated activation of nuclear factor-kappaB in immortalized endometriotic cells and their suppression by trichostatin A. Gynecol Obstet Invest. 2010;70(1):23–33.

  23. 23.

    Lu Y, Nie J, Liu X, Zheng Y, Guo SW. Trichostatin A, a histone deacetylase inhibitor, reduces lesion growth and hyperalgesia in experimentally induced endometriosis in mice. Hum Reprod. 2010;25(4):1014–1025.

  24. 24.

    Richter ON, Dorn C, Rosing B, Flaskamp C, Ulrich U. Tumor necrosis factor alpha secretion by peritoneal macrophages in patients with endometriosis. Arch Gynecol Obstet. 2005;271(2):143–147.

  25. 25.

    Cunha FQ, Poole S, Lorenzetti BB, Ferreira SH. The pivotal role of tumour necrosis factor alpha in the development of inflammatory hyperalgesia. Br J Pharmacol. 1992;107(3):660–664.

  26. 26.

    Fang Z, Yang S, Gurates B, et al. Genetic or enzymatic disruption of aromatase inhibits the growth of ectopic uterine tissue. J Clin Endocrinol Metab. 2002;87(7):3460–3466.

  27. 27.

    Berkley KJ, Cason A, Jacobs H, Bradshaw H, Wood E. Vaginal hyperalgesia in a rat model of endometriosis. Neurosci Lett. 2001;306(3):185–188.

  28. 28.

    Le Bars D, Gozariu M, Cadden SW. Animal models of nociception. Pharmacol Rev. 2001;53(4):597–652.

  29. 29.

    Bannon AW, Malmberg AB. Models of nociception: hot-plate, tail-flick, and formalin tests in rodents. Curr Protoc Neurosci. 2007;Chapter 8: Unit 8 9.

  30. 30.

    Inhaka R, Gentleman RR. R: a language for data analysis and graphics. J comput Graph Statist. 1996;5(3):1923–1927.

  31. 31.

    He W, Liu XS, Zhang YQ, Guo SW. Generalized hyperalgesia in women with endometriosis and its resolution following a successful surgery. Reprod Sci. 2010;17(12):1099–1111.

  32. 32.

    Berkley KJ, McAllister SL, Accius BE, Winnard KP. Endometriosis-induced vaginal hyperalgesia in the rat: effect of estropause, ovariectomy, and estradiol replacement. Pain. 2007;132(suppl 1):S150–S159.

  33. 33.

    Zhao T, Liu X, Zhen X, Guo SW. Levo-Tetrahydropalmatine (l-THP) retards the growth of ectopic endometrial implants and alleviates generalized hyperalgesia in experimentally induced endometriosis in rats. Reprod Sci. 2010;18(1):28–45.

  34. 34.

    Vierck CJ Animal models of pain. In: McMahon S, Koltzenburg M, (eds.) Wall and Melzack’s Textbook of Pain. 5th ed. Philadelphia, PA: Elsevier, 2006, 175–185.

  35. 35.

    Wu MY, Ho HN. The role of cytokines in endometriosis. Am J Reprod Immunol. 2003;49(5):285–296.

  36. 36.

    Ji RR, Kohno T, Moore KA, Woolf CJ. Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci. 2003;26(12):696–705.

  37. 37.

    McAllister SL, McGinty KA, Resuehr D, Berkley KJ. Endometriosis-induced vaginal hyperalgesia in the rat: role of the ectopic growths and their innervation. Pain. 2009;147(1–3):255–264.

  38. 38.

    Latremoliere A, Woolf CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain. 2009;10(9):895–926.

  39. 39.

    Matsuzaki S, Canis M, Pouly JL, Rabischong B, Botchorishvili R, Mage G. Relationship between delay of surgical diagnosis and severity of disease in patients with symptomatic deep infiltrating endome-triosis. Fertil Steril. 2006;86(5):1314–1316; discussion 1317.

  40. 40.

    Harada T, Iwabe T, Terakawa N. Role of cytokines in endometriosis. Fertil Steril. 2001;76(1):1–10.

  41. 41.

    Shirley SW, Stewart BH, Mirelman S. Dimethyl sulfoxide in treatment of inflammatory genitourinary disorders. Urology. 1978;11(3):215–220.

  42. 42.

    Swanson BN. Medical use of dimethyl sulfoxide (DMSO). Rev Clin Basic Pharm. 1985;5(1–2):1–33.

  43. 43.

    Bedaiwy MA, Falcone T, Sharma RK, et al. Prediction of endometriosis with serum and peritoneal fluid markers: a prospective controlled trial. Hum Reprod. 2002;17(2):426–431.

  44. 44.

    May KE, Conduit-Hulbert SA, Villar J, Kirtley S, Kennedy SH, Becker CM. Peripheral biomarkers of endometriosis: a systematic review. Hum Reprod Update. 2010;16(6):651–674.

  45. 45.

    Malick A, Jakubowski M, Elmquist JK, Saper CB, Burstein R. A neurohistochemical blueprint for pain-induced loss of appetite. Proc Natl Acad Sci U S A. 2001;98(17):9930–9935.

  46. 46.

    Stevenson GW, Bilsky EJ, Negus SS. Targeting pain-suppressed behaviors in preclinical assays of pain and analgesia: effects of morphine on acetic acid-suppressed feeding in C57BL/6 J mice. J Pain. 2006;7(6):408–416.

  47. 47.

    Spannhoff A, Kim YK, Raynal NJ, et al. Histone deacetylase inhibitor activity in royal jelly might facilitate caste switching in bees. EMBO Rep. 2011;12(3):238–243.

  48. 48.

    Kucharski R, Maleszka J, Foret S, Maleszka R. Nutritional control of reproductive status in honeybees via DNA methylation. Science. 2008;319(5871):1827–1830.

  49. 49.

    Kim HJ, Bae SC. Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti-cancer drugs. Am J Transl Res. 2011;3(2):166–179.

  50. 50.

    Giudice LC. Clinical practice. Endometriosis. N Engl J Med. 2010;362(25):2389–2398.

  51. 51.

    Vercellini P, Cortesi I, Crosignani PG. Progestins for symptomatic endometriosis: a critical analysis of the evidence. Fertil Steril. 1997;68(3):393–401.

  52. 52.

    Attia GR, Zeitoun K, Edwards D, Johns A, Carr BR, Bulun SE. Progesterone receptor isoform A but not B is expressed in endometriosis. J Clin Endocrinol Metab. 2000;85(8):2897–2902.

  53. 53.

    Wu Y, Strawn E, Basir Z, Halverson G, Guo SW. Promoter hypermethylation of progesterone receptor isoform B (PR-B) in endometriosis. Epigenetics. 2006;1(2):106–111.

  54. 54.

    Wu Y, Guo SW. Suppression of IL-1beta-induced COX-2 expression by trichostatin A (TSA) in human endometrial stromal cells. Eur J Obstet Gynecol Reprod Biol. 2007;135(1): 88–93.

  55. 55.

    Tsai SJ, Wu MH, Lin CC, Sun HS, Chen HM. Regulation of steroidogenic acute regulatory protein expression and progesterone production in endometriotic stromal cells. J Clin Endocrinol Metab. 2001;86(12):5765–5773.

  56. 56.

    Attar E, Tokunaga H, Imir G, et al. Prostaglandin E2 via steroidogenic factor-1 coordinately regulates transcription of steroidogenic genes necessary for estrogen synthesis in endometriosis. J Clin Endocrinol Metab. 2009;94(2):623–631.

  57. 57.

    Xishi L, Lei Y, Guo SW. Valproic acid as a therapy for adenomyosis: a comparative case series. Reprod Sci. 2010;17(10):904–912.

Download references

Author information

Correspondence to Sun-Wei Guo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, M., Liu, X., Zhang, Y. et al. Valproic Acid and Progestin Inhibit Lesion Growth and Reduce Hyperalgesia in Experimentally Induced Endometriosis in Rats. Reprod. Sci. 19, 360–373 (2012).

Download citation


  • endometriosis
  • histone deacetylase inhibitor
  • hot plate test
  • tail-flick test
  • hyperalgesia
  • inflammation
  • progestin