Advertisement

Reproductive Sciences

, Volume 19, Issue 1, pp 31–42 | Cite as

Decreased Spermatogenesis, Fertility, and Altered Slc2A Expression in Akt1−/− and Akt2−/− Testes and Sperm

  • Sung Tae Kim
  • Kenan Omurtag
  • Kelle H. MoleyEmail author
Original Articles

Abstract

Akt is serine/threonine protein kinase associated with various cellular processes and 3 different isoforms exist. This work describes the reproductive phenotype of Akt1−/− and Akt2−/− in male mice. The seminiferous tubule diameter in Akt1−/− testes was less than wild-type or Akt2−/− testes. The expression of phospho-phosphatase and tensin homologue deleted on chromosome 10 (p-PTEN) and phospho-glycogen synthase kinase 3β (GSK-3β) was elevated in Akt1−/− testes. Alterations in expression and localization to the plasma membrane of several facilitative glucose transporters (Slc2a8, 9a and 9b) were detected in these knockout compared to wild-type mice. Apoptotic sperm were more prevalent in both null mice compared to wild-type mice, whereas sperm concentration and motility were significantly lower in the null sperm. Finally, Akt2−/− sperm had a markedly decreased fertilization rate by in vitro fertilization (IVF) and resulting embryos displayed increased fragmentation and poor growth. These results suggest that altered SLC2A expression and increased PTEN and GSK3β activity may be responsible for the decreased spermatogenesis, sperm maturation, and fertilization in the Akt1−/− and Akt2−/− male mice.

Keywords

Akt facilitative glucose transporter testis sperm fertility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kandel ES, Hay N. The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB. Exp Cell Res. 1999; 253(1):210–229.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Datta SR, Brunet A, Greenberg ME. Cellular survival: a play in three Akts. Genes Dev. 1999;13(22):2905–2927.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Brazil DP, Yang ZZ, Hemmings BA. Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem Sci. 2004;29(5):233–242.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Altomare DA, Lyons GE, Mitsuuchi Y, Cheng JQ, Testa JR. Akt2 mRNA is highly expressed in embryonic brown fat and the AKT2 kinase is activated by insulin. Oncogene. 1998; 16(18):2407–2411.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Yang ZZ, Tschopp O, Hemmings-Mieszczak M, et al. Protein kinase B alpha/Akt1 regulates placental development and fetal growth. J Biol Chem. 2003;278(34):32124–32131.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Chen WS, Xu PZ, Gottlob K, et al. Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes Dev. 2001;15(17):2203–2208.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Cho H, Thorvaldsen JL, Chu Q, Feng F, Birnbaum MJ. Akt1/PKBalpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J Biol Chem. 2001; 276(42):38349–38352.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Altomare DA, Guo K, Cheng JQ, Sonoda G, Walsh K, Testa JR. Cloning, chromosomal localization and expression analysis of the mouse Akt2 oncogene. Oncogene. 1995;11(6):1055–1060.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Garofalo RS, Orena SJ, et al. Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKB beta. J Clin Invest. 2003;112(2):197–208.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Brodbeck D, Cron P, Hemmings BA. A human protein kinase Bgamma with regulatory phosphorylation sites in the activation loop and in the C-terminal hydrophobic domain. J Biol Chem. 1999;274(2):9133–9136.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Nakatani K, Sakaue H, Thompson DA, Weigel RJ, Roth RA. Identification of a human Akt3 (protein kinase B gamma) which contains the regulatory serine phosphorylation site. Biochem Biophys Res Commun. 1999;257(3):906–910.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Tschopp O, Yang ZZ, Brodbeck D, et al. Essential role of protein kinase B gamma (PKB gamma/Akt3) in postnatal brain development but not in glucose homeostasis. Development. 2005;132(13): 2943–2954.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Peng XD, Xu PZ, Chen ML, et al. Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2. Genes Dev. 2003;17(11):1352–1365.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Yang ZZ, Tschopp O, Di-Poï N, et al. Dosage-dependent effects of Akt1/protein kinase Balpha (PKBalpha) and Akt3/ PKBgamma on thymus, skin, and cardiovascular and nervous system development in mice. Mol Cell Biol. 2005;25(23): 10407–10418.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Dummler B, Tschopp O, Hynx D, Yang ZZ, Dirnhofer S, Hemmings BA. Life with a single isoform of Akt: mice lacking Akt2 and Akt3 are viable but display impaired glucose homeostasis and growth deficiencies. Mol Cell Biol. 2006;26(21): 8042–8051.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Bae SS, Cho H, Mu J, Birnbaum MJ. Isoform-specific regulation of insulin-dependent glucose uptake by Akt/protein kinase B. J Biol Chem. 2003;278(49):49530–49536.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Kim ST, Moley KH. The expression of GLUT8, GLUT9a, and GLUT9b in the mouse testis and sperm. Reprod Sci. 2007; 14(5):445–455.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Kim ST, Moley K. Paternal effect on embryo quality in diabetic mice is related to poor sperm quality and associated with decreased GLUT expression. Reproduction. 2008;136(3):313–322.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Joost HG, Bell GI, Best JD, et al. Nomenclature of the GLUT/SLC2A family of sugar/polyol transport facilitators. Am J Physiol Endocrinol Metab. 2002;282(4):E974–E976.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Keembiyehetty C, Augustin R, Carayannopoulos MO, et al. Mouse glucose transporter 9 splice variants are expressed in adult liver and kidney and are up-regulated in diabetes. Mol Endocrinol. 2006;20(3):686–697.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Carayannopoulos MO, Chi MM, Cui Y, et al. GLUT8 is a glucose transporter responsible for insulin-stimulated glucose uptake in the blastocyst. Proc Natl Acad Sci U S A. 2000;97(13):7313–7318.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Augustin R, Riley J, Moley KH. GLUT8 contains a [DE]XXXL[LI] sorting motif and localizes to a late endosomal/lysosomal compartment. Traffic. 2005;6(12):1196–1212.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Evans SA, Doblado M, Chi MM, Corbett JA, Moley KH. Facilitative glucose transporter 9 expression affects glucose sensing in pancreatic beta-cells. Endocrinology. 2009;150(12):5302–5310.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Hong J, Kim ST, Tranguch S, Smith DF, Dey SK. Deficiency of co-chaperone immunophilin FKBP52 compromises sperm fertilizing capacity. Reproduction. 2007;133(2):395–403.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Rasoulpour T, DiPalma K, Kolvek B, Hixon M. Akt1 suppresses radiation-induced germ cell apoptosis in vivo. Endocrinology. 2006;147(9):4213–4221.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Santos-Ahmed J, Brown C, Smith SD, et al. Akt1 protects against germ cell apoptosis in the postnatal mouse testis following lactational exposure to 6-N-propylthiouracil. Reprod Toxicol. 2011; 31(1):17–25.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Pinto AB, Carayannopoulos MO, Hoehn A, Dowd L, Moley KH. Glucose transporter 8 expression and translocation are critical for murine blastocyst survival. Biol Reprod. 2002;66(6):1729–1733.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Gorovits N, Cui L, Busik JV, Ranalletta M, Hauguel de-Mouzon S, Charron MJ. Regulation of hepatic GLUT8 expression in normal and diabetic models. Endocrinology. 2003;144(5):1703–1711.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Han XX, Handberg A, Petersen LN, Ploug T, Galbo H. Stability of GLUT-1 and GLUT-4 expression in perfused rat muscle stimulated by insulin and exercise. J Appl Physiol. 1995;78(1):46–52.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Freeman JE, Wolf CR. Evidence against a role for serine 129 in determining murine cytochrome P450 Cyp2e-1 protein levels. Biochemistry. 1994;33(47):13963–13966.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Cantley LC, Neel BG. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci U S A. 1999; 96(8):4240–4245.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Myers MP, Stolarov JP, Eng C, et al. P-TEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase. Proc Natl Acad Sci U S A. 1997;94(17):9052–9057.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Wan X, Helman LJ. Levels of PTEN protein modulate Akt phosphorylation on serine 473, but not on threonine 308, in IGF-II-overexpressing rhabdomyosarcomas cells. Oncogene. 2003; 22(50):8205–8211.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Wu X, Senechal K, Neshat MS, Whang YE, Sawyers CL. The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. Proc Natl Acad Sci U S A. 1998;95(26):15587–15591.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Vazquez F, Ramaswamy S, Nakamura N, Sellers WR. Phosphorylation of the PTEN tail regulates protein stability and function. Mol Cell Biol. 2000;20(14):5010–5018.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Torres J, Pulido R. The tumor suppressor PTEN is phosphorylated by the protein kinase CK2 at its C terminus. Implications for PTEN stability to proteasome-mediated degradation. J Biol Chem. 2001;276(2):993–998.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Welsh GI, Wilson C, Proud CG. GSK3: a SHAGGY frog story. Trends Cell Biol. 1996;6(7):274–279.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Srivastava AK, Pandey SK. Potential mechanism(s) involved in the regulation of glycogen synthesis by insulin. Mol Cell Biochem. 1998;182(1–2):135–141.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995;378(6559):785–789.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Zheng X, Xie L, Qin J, Shen H, Chen Z, Jin Y. Effects of wortmannin on phosphorylation of PDK1, GSK3-beta, PTEN and expression of Skp2 mRNA after ischemia/reperfusion injury in the mouse kidney. Int Urol Nephrol. 2008;40(1):185–192.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Finkielsztein A, Kelly GM. Altering PI3K-Akt signalling in zebrafish embryos affects PTEN phosphorylation and gastrulation. Biol Cell. 2009;101(11):661–678.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Kim NH, Jeon S, Lee HJ, Lee AY. Impaired PI3K/Akt activation-mediated NF-kappaB inactivation under elevated TNF-alpha is more vulnerable to apoptosis in vitiliginous keratinocytes. J Invest Dermatol. 2007;127(11):2612–2617.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Mulholland DJ, Dedhar S, Wu H, Nelson CC. PTEN and GSK3beta: key regulators of progression to androgen-independent prostate cancer. Oncogene. 2006;25(3):329–337.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Hoskins DD, Munsterman D, Hall ML. The control of bovine sperm glycolysis during epididymal transit. Biol Reprod. 1975; 12(5):566–572.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Urner F, Sakkas D. A possible role for the pentose phosphate pathway of spermatozoa in gamete fusion in the mouse. Biol Reprod. 1999;60(3):733–739.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Jelodar G, Khaksar Z, Pourahmadi M. Endocrine profile and testicular histomorphometry in adult rat offspring of diabetic mothers. J Physiol Sci. 2009;59(5):377–382.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Murray FT, Cameron DF, Orth JM. Gonadal dysfunction in the spontaneously diabetic BB rat. Metabolism. 1983;32(7 suppl 1):141–147.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Scarano WR, Messias AG, Oliva SU, Klinefelter GR, Kempinas WG. Sexual behaviour, sperm quantity and quality after short-term streptozotocin-induced hyperglycaemia in rats. Int J Androl. 2006;29(4):482–488.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Seethalakshmi L, Menon M, Diamond D. The effect of streptozotocin-induced diabetes on the neuroendocrine-male reproductive tract axis of the adult rat. J Urol. 1987;138(1):190–194.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Bener A, Al-Ansari AA, Zirie M, Al-Hamaq AO. Is male fertility associated with type 2 diabetes mellitus? Int Urol Nephrol. 2009;41(4):777–784.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Mallidis C, Agbaje I, McClureN, Kliesch, S. [The influence of diabetes mellitus on male reproductive function: a poorly investigated aspect of male infertility]. Urologe A. 2011;50(1):33–37.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Baccetti B, La Marca A, Piomboni P, et al. Insulin-dependent diabetes in men is associated with hypothalamo-pituitary derangement and with impairment in semen quality. Hum Reprod. 2002;17(10):2673–2677.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Shrivastav P, Swann J, Jeremy JY, Thompson C, Shaw RW, Dandona P. Sperm function and structure and seminal plasma prostanoid concentrations in men with IDDM. Diabetes Care. 1989;12(10):742–744.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Society for Reproductive Investigation 2012

Authors and Affiliations

  1. 1.Department of Obstetrics and GynecologyWashington University in St. LouisSt. LouisUSA

Personalised recommendations