Reproductive Sciences

, Volume 19, Issue 4, pp 423–430 | Cite as

Mechanism of Programmed Obesity in Intrauterine Fetal Growth Restricted Offspring: Paradoxically Enhanced Appetite Stimulation in Fed and Fasting States

  • Tatsuya Fukami
  • Xiaoping Sun
  • Tie Li
  • Mina Desai
  • Michael G. RossEmail author


We have shown that intrauterine fetal growth restriction (IUGR) newborn rats exhibit hyperphagia, reduced satiety, and adult obesity. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a principal metabolic regulator that specifically regulates appetite in the hypothalamic arcuate nucleus (ARC). In response to fasting, upregulated AMPK activity increases the expression of orexigenic (neuropeptide Y [NPY] and agouti-related protein [AgRP]) and decreases anorexigenic (proopiomelanocortin [POMC]) peptides. We hypothesized that IUGR offspring would exhibit upregulated hypothalamic AMPK, contributing to hyperphagia and obesity. We determined AMPK activity and appetite-modulating peptides (NPY and POMC) during fasting and fed conditions in the ARC of adult IUGR and control females. Pregnant rats were fed ad libitum diet (control) or were 50% food restricted from gestation day 10 to 21 to produce IUGR newborns. At 10 months of age, hypothalamic ARC was dissected from fasted (48 hours) and fed control and IUGR females. Arcuate nucleus messenger RNA ([mRNA] NPY, AgRP, and POMC) and protein expression (total and phosphorylated AMPK, Akt) was determined by quantitative reverse transcriptase–polymerase chain reaction and Western Blot, respectively. In the fed state, IUGR adult females demonstrated evidence of persistent appetite stimulation with significantly upregulated phospho (Thr172)-AMPKα/AMPK (1.3-fold), NPY/AgRP (2.3/1.8-fold) and decreased pAkt/Akt (0.6-fold) and POMC (0.7-fold) as compared to fed controls. In controls though not IUGR adult females, fasting significantly increased pAMPK/AMPK, NPY, and AgRP and decreased pAkt/Akt and POMC. Despite obesity, fed IUGR adult females exhibit upregulated AMPK activity and appetite stimulatory factors, similar to that exhibited by fasting controls. These results suggest that an enhanced appetite drive in both fed and fasting states contributes to hyperphagia and obesity in IUGR offspring.


appetite AMP-activated protein kinase intrauterine fetal growth restriction neuropeptide Y 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ravelli GP, Stein ZA, Susser MW. Obesity in young men after famine exposure in utero and early infancy. N Engl J Med. 1976;295(7):349–353.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Barker DJ, Osmond C, Golding J, Kuh D, Wadsworth ME. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BaMJ. 1989;298(6673):564–567.Google Scholar
  3. 3.
    Shiell AW, Campbell DM, Hall MH, Barker DJ. Diet in late pregnancy and glucose-insulin metabolism of the offspring 40 years later. Br J Obstet Gynaecol. 2000;107(7):890–895.CrossRefGoogle Scholar
  4. 4.
    Barker DJ. The developmental origins of adult disease. Eur J Epidemiol. 2003;18(8):733–736.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Ross MG, Desai M. Gestational programming: population survival effects of drought and famine during pregnancy. Am J Physiol Regul Integr Comp Physiol. 2005;288(1):R25–R33.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Desai M, Babu J, Ross MG. Programmed metabolic syndrome: prenatal undernutrition and postweaning overnutrition. Am J Physiol Regul Integr Comp Physiol. 2007;293(6):R2306–R2314.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Desai M, Gayle D, Han G, Ross MG. Programmed hyperphagia due to reduced anorexigenic mechanisms in intrauterine growth-restricted offspring. Reprod Sci. 2007;14(4):329–337.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Spiegel A, Nabel E, Volkow N, Landis S, Li TK. Obesity on the brain. Nat Neurosci. 2005;8(5):552–553.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Hahn TM, Breininger JF, Baskin DG, Schwartz MW. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat Neurosci. 1998;1(4):271–272.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Hahm S, Fekete C, Mizuno TM, et al. VGF is required for obesity induced by diet, gold thioglucose treatment, and agouti and is differentially regulated in pro-opiomelanocortin—and neuropeptide Y-containing arcuate neurons in response to fasting. J Neurosci. 2002;22(16):6929–6938.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Bluher S, Ziotopoulou M, Bullen JW Jr,, et al. Responsiveness to peripherally administered melanocortins in lean and obese mice. Diabetes. 2004;53(1):82–90.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Turnley AM, Stapleton D, Mann RJ, Witters LA, Kemp BE, Bartlett PF. Cellular distribution and developmental expression of AMP-activated protein kinase isoforms in mouse central nervous system. J Neurochem. 1999;72(4):1707–1716.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Culmsee C, Monnig J, Kemp BE, Mattson MP. AMP-activated protein kinase is highly expressed in neurons in the developing rat brain and promotes neuronal survival following glucose deprivation. J Mol Neurosci. 2001;17:45–58.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005;1(1):15–25.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Xue B, Kahn BB. AMPK integrates nutrient and hormonal signals to regulate food intake and energy balance through effects in the hypothalamus and peripheral tissues. J Physiol. 2006;574(pt 1):73–83.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Hardie DG. Sensing of energy and nutrients by AMP-activated protein kinase. Am J Clin Nutr. 2011;93(4):891S–896S.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Minokoshi Y, Alquier T, Furukawa N, et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature. 2004;428(6982):569–574.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Ramamurthy S, Ronnett GV. Developing a head for energy sensing: AMP-activated protein kinase as a multifunctional metabolic sensor in the brain. J Physiol. 2006;574(pt 1):85–93.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Sipols AJ, Baskin DG, Schwartz MW. Effect of intracerebro-ventricular insulin infusion on diabetic hyperphagia and hypothalamic neuropeptide gene expression. Diabetes. 1995;44(2):147–151.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001;414(6865):799–806.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    White MF. IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab. 2002;283(3):E413–E422.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Sasaoka T, Hori H, Wada T, et al. SH2-containing inositol phosphatase 2 negatively regulates insulin-induced glycogen synthesis in L6 myotubes. Diabetologia. 2001;44(10):1258–1267.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Wada T, Sasaoka T, Funaki M, et al. Overexpression of SH2-containing inositol phosphatase 2 results in negative regulation of insulin-induced metabolic actions in 3T3-L1 adipocytes via its 5′-phosphatase catalytic activity. Mol Cell Biol. 2001;21(5):1633–1646.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Chakraborty A, Koldobskiy MA, Bello NT, et al. Inositol pyrophosphates inhibit Akt signaling, thereby regulating insulin sensitivity and weight gain. Cell. 2010;143(6):897–910.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Roman EA, Cesquini M, Stoppa GR, Carvalheira JB, Torsoni MA, Velloso LA. Activation of AMPK in rat hypothalamus participates in cold-induced resistance to nutrient-dependent anorexigenic signals. J Physiol. 2005;568:993–1001.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Desai M, Gayle D, Babu J, Ross MG. The timing of nutrient restriction during rat pregnancy/lactation alters metabolic syndrome phenotype. Am J Obstet Gynecol. 2007;196(6):555.e1–e7.CrossRefGoogle Scholar
  27. 27.
    Jelks A, Belkacemi L, Han G, Chong WL, Ross MG, Desai M. Paradoxical increase in maternal plasma leptin levels in food-restricted gestation: contribution by placental and adipose tissue. Reprod Sci. 2009;16(7):665–675.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Jia Y, Nguyen T, Desai M, Ross MG. Programmed alterations in hypothalamic neuronal orexigenic responses to ghrelin following gestational nutrient restriction. Reprod Sci. 2008;15(7):702–709.CrossRefGoogle Scholar
  29. 29.
    Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. 5th ed. San Diego, CA: Academic press; 2004.Google Scholar
  30. 30.
    Desai M, Guang Han, Ferelli M, Kallichanda N, Lane RH. Programmed upregulation of adipogenic transcription factors in intrauterine growth-restricted offspring. Reprod Sci. 2008;15(8):785–796PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔ CT. Methods. 2001;25(4):402–408.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature. 2000; 404(6778):661–671.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Murphy KG, Bloom SR. Gut hormones and the regulation of energy homeostasis. Nature. 2006;444(7121):854–859.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Belgardt BF, Brüning JC. CNS leptin and insulin action in the control of energy homeostasis. Ann N YAcad Sci. 2010;1212:97–113.CrossRefGoogle Scholar
  35. 35.
    Martin TL, Alquier T, Asakura K, Furukawa N, Preitner F, Kahn BB. Diet-induced obesity alters AMP kinase activity in hypothalamus and skeletal muscle. J Biol Chem. 2006;281(28):18933–18941.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Magni P, Dozio E, Ruscica M, et al. Feeding behavior in mammals including humans. Ann N Y Acad Sci. 2009;1163:221–232.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Minokoshi Y, Shiuchi T, Lee S, Suzuki A, Okamoto S. Role of hypothalamic AMP-kinase in food intake regulation. Nutrition. 2008;24(9):786–790.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Andersson U, Filipsson K, Abbott CR, et al. AMP-activated protein kinase plays a role in the control of food intake. J Biol Chem. 2004;279(13):12005–12008.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Kim MS, Park JY, Namkoong C, et al. Anti-obesity effects of alpha-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase. Nat Med. 2004;10(7):727–733.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Lage R, Vazquez MJ, Varela L, et al. Ghrelin effects on neuropeptides in the rat hypothalamus depend on fatty acid metabolism actions on BSX but not on gender. FASEB J. 2010;24(8):2670–2679.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Kola B, Hubina E, Tucci SA, et al. Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase. J Biol Chem. 2005;280(26): 25196–25201.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307(5712):1098–1101.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Marino JS, Xu Y, Hill JW. Central insulin and leptin-mediated autonomic control of glucose homeostasis. Trends Endocrinol Metab. 2011;22(7):275–285.Google Scholar
  44. 44.
    Iskandar K, Cao Y, Hayashi Y, et al. PDK-1/FoxO1 pathway in POMC neurons regulates Pomc expression and food intake. Am J Physiol Endocrinol Metab. 2010;298(4): E787–E798.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Niswender KD, Morton GJ, Stearns WH, Schwartz MW. Intracellular signalling. Key enzyme in leptin-induced anorexia. Nature. 2001;413(6858):794–795.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Niswender KD, Morrison CD, Clegg DJ, Schwartz MW. Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: a key mediator of insulin-induced anorexia. Diabetes. 2003;52(2):227–231.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Morton GJ, Gelling RW, Niswender KD, Morrison CD, Rhodes CJ, Schwartz MW. Leptin regulates insulin sensitivity via phosphatidylinositol-3-OH kinase signaling in mediobasal hypothalamic neurons. Cell Metab. 2005;2(6):411–420.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Carvalheira JB, Ribeiro EB, Araújo EP, et al. Selective impairment of insulin signalling in the hypothalamus of obese Zucker rats. Diabetologia. 2003;46(12):1629–1640.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Eckel LA, Houpt TA, Geary N. Spontaneous meal patterns in female rats with and without access to running wheels. Physiol Behav. 2000;70(3–4):397–405.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Spary EJ, Maqbool A, Batten TF. Changes in oestrogen receptor alpha expression in the nucleus of the solitary tract of the rat over the oestrous cycle and following ovariectomy. J Neuroendocrinol. 2010;22(6):492–502.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Jeffery GS, Peng KC, Wagner EJ. The role of phosphati-dylinositol-3-kinase and AMP-activated kinase in the rapid estrogenic attenuation of cannabinoid-Induced changes in energy homeostasis. Pharmaceuticals. 2011;4:630–651.PubMedCentralCrossRefGoogle Scholar
  52. 52.
    Musatov S, Chen W, Pfaff DW, et al. Silencing of estrogen receptor alpha in the ventromedial nucleus of hypothalamus leads to metabolic syndrome. Proc Natl Acad Sci USA. 2007;104(7):2501–2506.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Gao Q, Mezei G, Nie Y, et al. Anorectic estrogen mimics leptin’s effect on the rewiring of melanocortin cells and Stat3 signaling in obese animals. Nat Med. 2007;13(1):89–94.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Pelletier G, Rhéaume E, Simard J. Variations of pre-proNPY mRNA in the arcuate nucleus during the rat estrous cycle. Neu-roreport. 1992;3(3):253–255.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Society for Reproductive Investigation 2012

Authors and Affiliations

  • Tatsuya Fukami
    • 1
  • Xiaoping Sun
    • 1
  • Tie Li
    • 1
  • Mina Desai
    • 1
  • Michael G. Ross
    • 1
    Email author
  1. 1.Department of Obstetrics & GynecologyLos Angeles Biomedical Research Institute at Harbor–UCLA Medical CenterTorranceUSA

Personalised recommendations