Advertisement

Reproductive Sciences

, Volume 19, Issue 3, pp 322–331 | Cite as

Impact of Experimental Diabetes on the Maternal Uterine Vascular Remodeling During Rat Pregnancy

  • Julie K. PhillipsEmail author
  • Amanda M. Vance
  • Renju S. Raj
  • Maurizio Mandalà
  • Erika A. Linder
  • Natalia I. Gokina
Original Articles

Abstract

Normal pregnancy is associated with an increase in uteroplacental blood flow in part due to growth and remodeling of the maternal uterine vasculature. In this study, we characterized the effect of diabetic pregnancy on vascular growth of the maternal uterine vasculature and on the passive mechanical properties of the uterine resistance arteries. Diabetes was induced in pregnant rats by injection of streptozotocin and confirmed by development of hyperglycemia. Fetuses of diabetic rats were significantly smaller and placentas larger compared to controls. Pregnancy-induced axial elongation of the mesometrial uterine vasculature was not altered by diabetes. Vascular wall thickness was unchanged between groups. Wall distensibility was increased and the rate constant of an exponential function fitted to stress–strain curve was significantly reduced demonstrating decreased wall stiffness in diabetic uterine radial arteries compared to controls. We conclude that experimental diabetes in rat pregnancy does not compromise the growth of maternal uterine vasculature but alters passive mechanical properties of the uterine radial arteries.

Keywords

streptozotocin uterine vascular growth arterial wall distensibility stiffness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Assali NS, Douglass RA Jr, Baird WW, Nicholson DB, Suyemoto R. Measurement of uterine blood flow and uterine metabolism. IV. Results in normal pregnancy. Am J Obstet Gynecol. 1953; 66(2): 248–253.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Assali NS, Rauramo L, Peltonen T. Measurement of uterine blood flow and uterine metabolism. VIII. Uterine and fetal blood flow and oxygen consumption in early human pregnancy. Am J Obstet Gynecol. 1960; 79: 86–98.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Ramsey E. Placental vasculature and circulation. In: Handbook of Physiology. Endocrinology Female Reproductive System. Bethesda, MD: Am Physiol Soc. 1973; vol. II, pt 2, 323–337.Google Scholar
  4. 4.
    Meschia G. Circulation to female reproductive organs. In: Handbook of Physiology. The Cardiovascular System III. Peripheral Circulation and Organ Blood Flow. Bethesda, MD: Am Physiol Soc. 1983; sect. 2, vol. III, pt. 1, 241–269.Google Scholar
  5. 5.
    Osol G, Mandala M. Maternal uterine vascular remodeling during pregnancy. Physiology (Bethesda). 2009; 24: 58–71.Google Scholar
  6. 6.
    Moll W. Structure adaptation and blood flow control in the uterine arterial system after hemochorial placentation. Eur J Obstet Gynecol Reprod Biol. 2003; 110(suppl 1): S19–S27.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Nienartowicz A, Link S, Moll W. Adaptation of the uterine arcade in rats to pregnancy. J Dev Physiol. 1989; 12(2): 101–108.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Annibale DJ, Rosenfeld CR, Stull JT, Kamm KE. Protein content and myosin light chain phosphorylation in uterine arteries during pregnancy. Am J Physiol. 1990; 259(3 pt 1): C484–C489.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Cipolla M, Osol G. Hypertrophic and hyperplastic effects of pregnancy on the rat uterine arterial wall. Am J Obstet Gynecol. 1994; 171(3): 805–811.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Hilgers RH, Bergaya S, Schiffers PM, et al. Uterine artery structural and functional changes during pregnancy in tissue kallikreindeficient mice. Arterioscler Thromb Vasc Biol. 2003; 23(10): 1826–1832.PubMedCrossRefGoogle Scholar
  11. 11.
    Palmer SK, Zamudio S, Coffin C, Parker S, Stamm E, Moore LG. Quantitative estimation of human uterine artery blood flow and pelvic blood flow redistribution in pregnancy. Obstet Gynecol. 1992; 80(6): 1000–1006.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Griendling KK, Fuller EO, Cox RH. Pregnancy-induced changes in sheep uterine and carotid arteries. Am J Physiol. 1985; 248 (5 pt 2): H658–H665.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Guenther AE, Conley AJ, Van Orden DE, Farley DB, Ford SP. Structural and mechanical changes of uterine arteries during pregnancy in the pig. J Anim Sci. 1988; 66(12): 3144–3152.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Osol G, Cipolla M. Pregnancy-induced changes in the threedimensional mechanical properties of pressurized rat uteroplacental (radial) arteries. Am J Obstet Gynecol. 1993; 168(1 pt 1): 268–274.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Gokina NI, Mandala M, Osol G. Induction of localized differences in rat uterine radial artery behavior and structure during gestation. Am J Obstet Gynecol. 2003; 189(5): 1489–1493.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Burton GJ, Woods AW, Jauniaux E, Kingdom JC. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta. 2009; 30(6): 473–482.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Pijnenborg R, Vercruysse L, Hanssens M. The uterine spiral arteries in human pregnancy: facts and controversies. Placenta. 2006; 27(9–10): 939–958.CrossRefGoogle Scholar
  18. 18.
    Caluwaerts S, Vercruysse L, Luyten C, Pijnenborg R. Endovascular trophoblast invasion and associated structural changes in uterine spiral arteries of the pregnant rat. Placenta. 2005; 26(7): 574–584.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Brosens I, Robertson WB, Dixon HG. The physiological response of the vessels of the placental bed to normal pregnancy. J Pathol Bacteriol. 1967; 93(2): 569–579.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Cipolla MJ, Binder ND, Osol G. Myoendometrial versus placental uterine arteries: structural, mechanical, and functional differences in late-pregnant rabbits. Am J Obstet Gynecol. 1997; 177(1): 215–221.PubMedCrossRefGoogle Scholar
  21. 21.
    Ong SS, Baker PN, Mayhew TM, Dunn WR. Remodeling of myometrial radial arteries in preeclampsia. Am J Obstet Gynecol. 2005; 192(2): 572–579.PubMedCrossRefGoogle Scholar
  22. 22.
    Brosens JJ, Pijnenborg R, Brosens IA. The myometrial junctional zone spiral arteries in normal and abnormal pregnancies: a review of the literature. Am J Obstet Gynecol. 2002; 187(5): 1416–1423.PubMedCrossRefGoogle Scholar
  23. 23.
    Pietryga M, Brazert J, Wender-Ozegowska E, Biczysko R, Dubiel M, Gudmundsson S. Abnormal uterine Doppler is related to vasculopathy in pregestational diabetes mellitus. Circulation. 2005; 112(16): 2496–2500.CrossRefGoogle Scholar
  24. 24.
    Nash P, Olovsson M, Eriksson UJ. Placental dysfunction in Suramin-treated rats: impact of maternal diabetes and effects of antioxidative treatment. J Soc Gynecol Investig. 2005; 12(3): 174–184.PubMedCrossRefGoogle Scholar
  25. 25.
    Chartrel NC, Clabaut MT, Boismare FA, Schrub JC. Uteroplacental hemodynamic disturbances in establishment of fetal growth retardation in streptozocin-induced diabetic rats. Diabetes. 1990; 39(6): 743–746.PubMedCrossRefGoogle Scholar
  26. 26.
    Eriksson UJ, Jansson L. Diabetes in pregnancy: decreased placental blood flow and disturbed fetal development in the rat. Pediatr Res. 1984; 18(8): 735–738.PubMedCrossRefGoogle Scholar
  27. 27.
    Frisbee JC. Reduced nitric oxide bioavailability contributes to skeletal muscle microvessel rarefaction in the metabolic syndrome. Am J Physiol Regul Integr Comp Physiol. 2005; 289(2): R307–R316.PubMedCrossRefGoogle Scholar
  28. 28.
    Chatzigeorgiou A, Halapas A, Kalafatakis K, Kamper E. The use of animal models in the study of diabetes mellitus. In Vivo. 2009; 23(2): 245–258.PubMedGoogle Scholar
  29. 29.
    Cheta D. Animal models of type I (insulin-dependent) diabetes mellitus. J Pediatr Endocrinol Metab. 1998; 11(1): 11–19.PubMedCrossRefGoogle Scholar
  30. 30.
    Holemans K, Gerber RT, Meurrens K, De Clerck F, Poston L, Van Assche FA. Streptozotocin diabetes in the pregnant rat induces cardiovascular dysfunction in adult offspring. Diabetologia. 1999; 42(1): 81–89.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Stanley JL, Ashton N, Taggart MJ, Davidge ST, Baker PN. Uterine artery function in a mouse model of pregnancy complicated by diabetes. Vascul Pharmacol. 2009; 50(1–2): 8–13.CrossRefGoogle Scholar
  32. 32.
    Jawerbaum A, White V. Animal models in diabetes and pregnancy. Endocr Rev. 2010; 31(5): 680–701.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Karunanayake EH, Hearse DJ, Mellows G. The synthesis of [14C] streptozotocin and its distribution and excretion in the rat. Biochem J. 1974; 142(3): 673–683.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Padmanabhan R, Shafiullah M. Intrauterine growth retardation in experimental diabetes: possible role of the placenta. Arch Physiol Biochem. 2001; 109(3): 260–271.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Lopez-Soldado I, Herrera E. Different diabetogenic response to moderate doses of streptozotocin in pregnant rats, and its longterm consequences in the offspring. Exp Diabesity Res. 2003; 4(2): 107–118.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Sybulski S, Maughan GB. Use of streptozotocin as diabetic agent in pregnant rats. Endocrinology. 1971; 89(6): 1537–1540.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Connors BA, Bohlen HG, Evan AP. Vascular endothelium and smooth muscle remodeling accompanies hypertrophy of intestinal arterioles in streptozotocin diabetic rats. Microvasc Res. 1995; 49(3): 340–349.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Crijns FR, Wolffenbuttel BH, De Mey JG, Struijker Boudier HA. Mechanical properties of mesenteric arteries in diabetic rats: consequences of outward remodeling. Am J Physiol. 1999; 276(5 pt 2): H1672–H1677.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Ishihara G, Hiramatsu Y, Masuyama H, Kudo T. Streptozotocin-induced diabetic pregnant rats exhibit signs and symptoms mimicking preeclampsia. Metabolism. 2000; 49(7): 853–857.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Garner P. Type I diabetes mellitus and pregnancy. Lancet. 1995; 346(8968): 157–161.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Clarson C, Tevaarwerk GJ, Harding PG, Chance GW, Haust MD. Placental weight in diabetic pregnancies. Placenta. 1989; 10(3): 275–281.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Desoye G, Hauguel-de Mouzon S. The human placenta in gestational diabetes mellitus. The insulin and cytokine network. Diabetes Care. 2007; 30(suppl 2): S120–S126.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Sonoyama K, Greenstein A, Price A, Khavandi K, Heagerty T. Vascular remodeling: implications for small artery function and target organ damage. Ther Adv Cardiovasc Dis. 2007; 1(2): 129–137.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Rizzoni D, Rosei EA. Small artery remodeling in diabetes mellitus. Nutr Metab Cardiovasc Dis. 2009; 19(8): 587–592.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Frisbee JC. Vascular dysfunction in obesity and insulin resistance. Microcirculation. 2007; 14(4–5): 269–271.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Reddy GK. AGE-related cross-linking of collagen is associated with aortic wall matrix stiffness in the pathogenesis of drug-induced diabetes in rats. Microvasc Res. 2004; 68(2): 132–142.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Wolffenbuttel BH, Boulanger CM, Crijns FR, et al. Breakers of advanced glycation end products restore large artery properties in experimental diabetes. Proc Natl Acad Sci U S A. 1998; 95(8): 4630–4634.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Hill MA, Ege EA. Active and passive mechanical properties of isolated arterioles from STZ-induced diabetic rats. Effect of aminoguanidine treatment. Diabetes. 1994; 43(12): 1450–1456.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Wigg SJ, Tare M, Forbes J, et al. Early vitamin E supplementation attenuates diabetes-associated vascular dysfunction and the rise in protein kinase C-beta in mesenteric artery and ameliorates wall stiffness in femoral artery of Wistar rats. Diabetologia. 2004; 47(6): 1038–1046.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Yu G, Zou H, Prewitt RL, Hill MA. Impaired arteriolar mechanotransduction in experimental diabetes mellitus. J Diabetes Complications. 1999; 13(5–6): 235–242.PubMedCrossRefGoogle Scholar
  51. 51.
    Schofield I, Malik R, Izzard A, Austin C, Heagerty A. Vascular structural and functional changes in type 2 diabetes mellitus: evidence for the roles of abnormal myogenic responsiveness and dyslipidemia. Circulation. 2002; 106(24): 3037–3043.PubMedCrossRefGoogle Scholar
  52. 52.
    Zieman SJ, Melenovsky V, Kass DA. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol. 2005; 25(5): 932–943.PubMedCrossRefGoogle Scholar
  53. 53.
    Cox RH. Passive mechanics and connective tissue composition of canine arteries. Am J Physiol. 1978; 234(5): H533–H541.PubMedCrossRefGoogle Scholar
  54. 54.
    Sachidanandam K, Hutchinson JR, Elgebaly MM, et al. Glycemic control prevents microvascular remodeling and increased tone in type 2 diabetes: link to endothelin-1. Am J Physiol Regul Integr Comp Physiol. 2009; 296(4): R952–R959.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Gokina NI, Kuzina OY, Pryor L. Induction of endothelial dysfunction of rat uteroplacental arteries during experimental diabetes. Reprod Sci. 2008; 15: 267A.Google Scholar

Copyright information

© Society for Reproductive Investigation 2012

Authors and Affiliations

  • Julie K. Phillips
    • 1
    • 3
    Email author
  • Amanda M. Vance
    • 1
  • Renju S. Raj
    • 1
  • Maurizio Mandalà
    • 2
  • Erika A. Linder
    • 1
  • Natalia I. Gokina
    • 1
  1. 1.Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of VermontBurlingtonUSA
  2. 2.Department of Cell BiologyUniversity of CalabriaArcavacata di rende (CS)Italy
  3. 3.BurlingtonUSA

Personalised recommendations