Reproductive Sciences

, Volume 19, Issue 3, pp 271–281 | Cite as

Interleukin 1β Regulates Progesterone Metabolism in Human Cervical Fibroblasts

  • Amy E. Roberson
  • Kimberly Hyatt
  • Christy Kenkel
  • Krista Hanson
  • Dean A. MyersEmail author
Original Articles


Progesterone plays a critical role in regulating cervical structure necessary for pregnancy maintenance. Preterm labor and early cervical ripening are often associated with localized infection. We hypothesized that proinflammatory cytokines enhance progesterone metabolism in human cervical fibroblasts (HCFs) in vitro, through the regulation of the expression of 20α-hydroxysteroid dehydrogenases (aldo-keto reductase [AKR]1C1, AKR1C2, or AKR1C3), 5α-reductase type 1 (5α-RDT1), and/or 17β-hydroxysteroid dehyrogenases (17β-HSD) type 1 and 2. The expression of both progesterone receptor (PR) and estrogen receptor α (ERα) was also studied. Human cervical fibroblasts were found to express AKR1C1, C2, and C3, with AKR1C1 exhibiting the greatest expression. These cells also expressed 5α-RDT1 and 17β-HSD1 and 2, albeit to a lesser level compared to the aldo-keto reductases. The fibroblasts also expressed both PR and ERα. Interleukin 1β (IL-1β) significantly increased the expression of AKR1C1 and C2 but not C3 but did not alter 5α-RDT1 nor 17β-HSD1 or 2 expression. Interleukin 1β treatment significantly increased progesterone metabolism by these cells. Use of specific inhibitors for aldo-keto reductases or 5α reductases confirmed that the increased progesterone metabolism was a consequence of the increased expression and/or activity of AKR1C1/2. Our results indicate that a major proinflammatory cytokine, IL-1β, can facilitate local progesterone metabolism in a cell type critical for maintaining cervical structure via regulating expression of AKR1C1 and 2.


cervical fibroblasts progesterone interleukin 1β aldo-keto reductase AKR1C. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Malmstrom E, Sennstrom M, Holmberg A, et al. The importance of fibroblasts in remodeling of the human uterine cervix during pregnancy and parturition. Mol Hum Reprod. 2007; 13(5): 333–341.CrossRefGoogle Scholar
  2. 2.
    Elliot CL, Brennand JE, Calder AA. The effects of mifepristone on cervical ripening and labor induction in primigravidae. Obset Gynecol. 1998;92(5):804–809.Google Scholar
  3. 3.
    Andersson S, Minjarez D, Yost NP, Word RA. Estrogen and progesterone metabolism in the cervix during pregnancy and parturition. J Clin Endocrinol Metab. 2008;93(6):2366–2374.CrossRefGoogle Scholar
  4. 4.
    Neilson JP. Mifepristone for induction of labour. Cochrane Database Syst Rev. 2002;2:CD002865Google Scholar
  5. 5.
    Hegele-Hartung C, Chwalisz K, Beier HM, Elger W. Ripening of the uterine cervix of the guinea-pig after treatment with the progesterone antagonist onapristone (ZK 98.299): an electron microscopic study. Hum Reprod. 1989;4(4):369–377.CrossRefGoogle Scholar
  6. 6.
    Stys SJ, Clewell WH, Meshia G. Changes in cervical compliance at parturition independent of uterine activity. Am J Obstet Gynecol 1978;130(4):414–418.CrossRefGoogle Scholar
  7. 7.
    O’Brien JM, DeFranco EA, Adair CD, et al. Effect of progesterone on cervical shortening in women at risk for preterm birth: secondary analysis from a multinational, randomized, doubleblind, placebo-controlled trial. Ultrasound Obstet Gynecol. 2009;34(6):653–659.CrossRefGoogle Scholar
  8. 8.
    Sanborn BM, Held B, Kuo HS. Hormonal action in human cervix–II. Specific progestogen binding proteins in human cervix. J Steroid Biochem. 1976;7(9):665–672.CrossRefGoogle Scholar
  9. 9.
    Stjernholm Y, Sahlin L, Malmström A, Barchan K, Eriksson HA, Ekman G. Potential roles for gonadal steroids and insulin-like growth factor I during final cervical ripening. Obstet Gynecol. 1997;90(3):375–380.CrossRefGoogle Scholar
  10. 10.
    Stjernholm-Vladic Y, Wang H, Stygar D, Ekman G, Sahlin L. Differential regulation of the progesterone receptor A and B in the human uterine cervix at parturition. Gynecol Endocrinol. 2004;18(1):41–46.CrossRefGoogle Scholar
  11. 11.
    Stjernholm Y, Sahlin L, Akerberg S, et al. Cervical ripening in humans: potential roles of estrogen, progesterone, and insulin-like growth factor-I. Am J Obstet Gynecol. 1996;174(3): 1065–1071.CrossRefGoogle Scholar
  12. 12.
    Wang H, Stjernholm Y, Ekman G, Eriksson H, Sahlin L. Different regulation of oestrogen receptors alpha and beta in the human cervix at term pregnancy. Mol Hum Reprod. 2001;7(3):293–300.CrossRefGoogle Scholar
  13. 13.
    Stygar D, Wang H, Vladic YS, Ekman G, Eriksson H, Sahlin L. Co-localization of oestrogen receptor beta and leukocyte markers in the human cervix. Mol Hum Reprod. 2001;7(9):881–886.CrossRefGoogle Scholar
  14. 14.
    Word RA, Li XH, Hnat M, Carrick K. Dynamics of cervical remodeling during pregnancy and parturition: mechanisms and current concepts. Semin Reprod Med. 2007;25(1):69–79.CrossRefGoogle Scholar
  15. 15.
    Christiaens I, Zaragoza DB, Guilbert L, Robertson SA, Mitchell BF, Olson DM. Inflammatory processes in preterm and term parturition. J Reprod Immunol. 2008;79(1):50–57.CrossRefGoogle Scholar
  16. 16.
    Elliott CL, Loudon JA, Brown N, Slater DM, Bennett PR, Sullivan MH. IL-1beta and IL-8 in human fetal membranes: changes with gestational age, labor, and culture conditions. Am J Reprod Immunol. 2001;46(4):260–267.CrossRefGoogle Scholar
  17. 17.
    Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371(9606):75–84.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Osman I, Young A, Ledingham MA, et al. Leukocyte density and pro-inflammatory cytokine expression in human fetal membranes, decidua, cervix and myometrium before and during labour at term. Mol Hum Reprod. 2003;9(1): 41–45.CrossRefGoogle Scholar
  19. 19.
    Young A, Thomson AJ, Ledingham M, Jordan F, Greer IA, Norman JE. Immunolocalization of proinflammatory cytokines in myometrium, cervix, and fetal membranes during human parturition at term. Biol Reprod. 2002;66(2):445–449.CrossRefGoogle Scholar
  20. 20.
    Yellon SM, Mackler AM, Kirby MA. The role of leukocyte traffic and activation in parturition. J Soc Gynecol Investig. 2003; 10(6): 323–338.CrossRefGoogle Scholar
  21. 21.
    Rizner TL, Smuc T, Rupreht R, Sinkovec J, Penning TM. AKR1C1 and AKR1C3 may determine progesterone and estrogen ratios in endometrial cancer. Mol Cell Endocrinol. 2006;248(1–2):126–135.CrossRefGoogle Scholar
  22. 22.
    Myers DA, Hyatt K, Malgorzata M, Bird IM, Ducsay DA. Long term hypoxia enhances proopiomelanocortin processing in the near term ovine fetus. Am J Physiol Regul Integr Comp Physiol. 2004;288(5):R1178–R1184.CrossRefGoogle Scholar
  23. 23.
    Myers DA, Bell PA, Hyatt K, Malgorzata M, Ducsay DA. Long term hypoxia represses the expression of key genes regulating cortisol biosynthesis in the near term ovine fetus. Am J Physiol Regul Integr Comp Physiol. 2005;289(6):R1707–R1714.CrossRefGoogle Scholar
  24. 24.
    Penning TM, Burczynski ME, Jez JM, et al. Human 3alphahydroxysteroid dehydrogenase isoforms (AKR1C1-AKR1C4) of the aldo-keto reductase superfamily: functional plasticity and tissue distribution reveals roles in the inactivation and formation of male and female sex hormones. Biochem J. 2000;351(pt 1):67–77.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Thigpen AE, Cala KM, Russell DW. Characterization of Chinese hamster ovary cell lines expressing human steroid 5 alphareductase isozymes. J Biol Chem. 1993;268(23):17404–17412.PubMedGoogle Scholar
  26. 26.
    Thigpen AE, Russell DW. Four-amino acid segment in steroid 5 alpha-reductase 1 confers sensitivity to finasteride, a competitive inhibitor. J Biol Chem. 1992;267(12):8577–8583.PubMedGoogle Scholar
  27. 27.
    Mahendroo MS, Porter A, Russell DW, Word RA. The parturition defect in steroid 5alpha-reductase type 1 knockout mice is due to impaired cervical ripening. Mol Endocrinol. 1999;13(6):981–992.PubMedGoogle Scholar
  28. 28.
    Mahendroo MS, Cala KM, Russell DW. 5 alpha-reduced androgens play a key role in murine parturition. Mol Endocrinol. 1996;10(4):380–392.PubMedGoogle Scholar
  29. 29.
    Strauss JF, 3rd, Stambaugh RL. Induction of 20α-hydroxysteroid dehydrogenase in rat corpora lutea of pregnancy by prostaglandin F2α. Prostaglandins. 1974;5(1):73–85.CrossRefGoogle Scholar
  30. 30.
    Hertelendy F, Zakár T. Prostaglandins and the myometrium and cervix. Prostaglandins Leukot Essent Fatty Acids. 2004;70(2): 207–222.CrossRefGoogle Scholar
  31. 31.
    Uldbjerg N, Ulmsten U, Ekman G. The ripening of the human uterine cervix in terms of connective tissue biochemistry. Clin Obstet Gynecol. 1983;26(1):14–26.CrossRefGoogle Scholar
  32. 32.
    Tibbets TA, Conneely OM, O’Malley BW. Progesterone via its receptor antagonizes the pro-inflammatory activity of estrogen in the mouse uterus. Biol Reprod. 1999;60(5):1158–1165.CrossRefGoogle Scholar
  33. 33.
    Yellon SM, Burns AE, See JL, Lechuga TJ, Kirby MA. Progesterone withdrawal promotes remodeling processes in the nonpregnant mouse cervix. Biol Reprod. 2009;81(1):1–6.CrossRefGoogle Scholar
  34. 34.
    Khan KN, Masuzaki H, Fujishita A, et al. Estrogen and progesterone receptor expression in macrophages and regulation of hepatocyte growth factor by ovarian steroids in women with endometriosis. Hum Reprod. 2005;20(7):2004–2013.CrossRefGoogle Scholar
  35. 35.
    Jin Y. Activities of aldo-keto reducatase 1 enzymes on two inhaled corticosteroids: implications for the pharmacologic effects of inhaled corticosteroids. Chem Biol Interact, 2011;191(1–3):234–238.CrossRefGoogle Scholar
  36. 36.
    Bokstrom H, Brannstrom M, Alexandersson M, Norstrom A. Leukocyte subpopulations in the human uterine cervical stroma at early and term pregnancy. Hum Reprod. 1997; 12(3):585–590.CrossRefGoogle Scholar
  37. 37.
    Chwalisz K. The use of progesterone antagonists for cervical ripening and as an adjunct to labour and delivery. Hum Reprod. 1994;9(suppl 1):131–161.CrossRefGoogle Scholar
  38. 38.
    Haluska GJ, Cook MJ, Novy MJ. Inhibition and augmentation of progesterone production during pregnancy: effects on parturition in rhesus monkeys. Am J Obstet Gynecol. 1997;176(3): 682–691.CrossRefGoogle Scholar
  39. 39.
    Penning TM. Hydroxysteroid dehydrogenases and pre-receptor regulation of steroid hormone action. Hum Reprod Update. 2003;9(3):193–205.CrossRefGoogle Scholar
  40. 40.
    Schafer RR. Cervical Extracellular Matrix Changes Due to Parturition [dissertation]. Grand Forks, ND: University of North Dakota; 2003.Google Scholar

Copyright information

© Society for Reproductive Investigation 2012

Authors and Affiliations

  • Amy E. Roberson
    • 1
  • Kimberly Hyatt
    • 2
  • Christy Kenkel
    • 2
  • Krista Hanson
    • 2
  • Dean A. Myers
    • 1
    • 2
    Email author
  1. 1.Department of Cell BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA
  2. 2.Department of Obstetrics and Gynecology, Suite 468 RP1University of Oklahoma Health Sciences CenterOklahoma CityUSA

Personalised recommendations