Reproductive Sciences

, Volume 19, Issue 1, pp 92–101 | Cite as

Cyclic Changes in the Expression of p57kip2 in Human Endometrium and its Regulation by Steroid Hormones in Endometrial Stromal Cells In Vitro

  • Sung Tae Kim
  • Sung Ki Lee
  • Myung Chan GyeEmail author
Original Articles


We investigated the expressions of p57kip2 and p27kip and its regulation by steroids in the normal and abnormal human endometrium. Endometrial p27kip1 and p57kip2 messenger RNA (mRNA) were markedly increased in the secretory phase. P57kip2 protein was absent in proliferative phase but appeared in glandular epithelium together with early- to mid-secretory phase stromal cells. During the late secretory phase, strong P57kip2 protein immunoreactivity was found in the stromal cells. In both endometrial hyperplasia and cancer, the expression of P57kip2 protein was low. In cultured human endometrial stromal cells (ESCs), p27kip1 mRNA levels were increased together with the decidual marker prolactin (prl), following treatment with 17β-estradiol (E2) and progesterone (P4). At 1 nmol/L, the glucocorticoid receptor (GR) agonist dexamethasone (DEX) induced prl, p57kip2, and p27kip1 mRNA in ESCs. Taken together, upregulation of p57kip2 may play an important role in the decidual differentiation by P4 and growth inhibition of malignant cells in human endometrium.


endometrium decidualization steroids p27kip1 p57kip2 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gellersen B, Brosens IA, Brosens JJ. Decidualization of the human endometrium: mechanisms, functions, and clinical perspectives. Semin Reprod Med. 2007;25(6):445–453.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Irwin JC, Kirk D, King RJ, Quigley MM, Gwatkin RB. Hormonal regulation of human endometrial stromal cells in culture: an in vitro model for decidualization. Fertil Steril. 1989;52(5):761–768.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Tabanelli S, Tang B, Gurpide E. In vitro decidualization of human endometrial stromal cells. J Steroid Biochem Mol Biol. 1992; 42(3–4):337–344.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Frank GR, Brar AK, Cedars MI, Handwerger S. Prostaglandin E2 enhances human endometrial stromal cell differentiation. Endocrinology. 1994;134(1):258–263.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Ferrari A, Petraglia F, Gurpide E. Corticotropin releasing factor decidualizes human endometrial stromal cells in vitro. Interaction with progestin. J Steroid Biochem Mol Biol. 1995;54(5–6):251–255.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Nemansky M, Moy E, Lyons CD, Yu I, Blithe DL. Human endometrial stromal cells generate uncombined alpha-subunit from human chorionic gonadotropin, which can synergize with progesterone to induce decidualization. J Clin Endocrinol Metab. 1998; 83(2):575–581.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Daly DC, Maslar IA, Riddick DH. Prolactin production during in vitro decidualization of proliferative endometrium. Am J Obstet Gynecol. 1983;145(6):672–678.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Tang B, Guller S, Gurpide E. Cyclic adenosine 3’, 5’-monophosphate induces prolactin expression in stromal cells isolated from human proliferative endometrium. Endocrinology. 1993;133(5): 2197–2203.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Tang B, Gurpide E. Direct effect of gonadotropins on decidualization of human endometrial stroma cells. J Steroid Biochem Mol Biol. 1993;47(1–6):115–121.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Zhu HH, Huang JR, Mazella J, Rosenberg M, Tseng L. Differential effects of progestin and relaxin on the synthesis and secretion of immunoreactive prolactin in long term culture of human endometrial stromal cells. J Clin Endocrinol Metab. 1990;71(4): 889–899.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Huang JR, Tseng L, Bischof P, Janne OA. Regulation of prolactin production by progestin, estrogen, and relaxin in human endometrial stromal cells. Endocrinology. 1987;121(6):2011–2017.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Rogatsky I, Trowbridge JM, Garabedian MJ. Glucocorticoid receptor-mediated cell cycle arrest is achieved through distinct cell-specific transcriptional regulatory mechanisms. Mol Cell Biol. 1997;17(6):3181–3193.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Corroyer S, Nabeyrat E, Clement A. Involvement of the cell cycle inhibitor CIP1/WAF1 in lung alveolar epithelial cell growth arrest induced by glucocorticoids. Endocrinology. 1997;138(9): 3677–3685.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Sanchez I, Goya L, Vallerga AK, Firestone GL. Glucocorticoids reversibly arrest rat hepatoma cell growth by inducing an early G1 block in cell cycle progression. Cell Growth Differ. 1993; 4(3):215–225.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Spencer F, Chi L, Zhu MX, Gebrelul S. Temporal glucocorticoid treatment: modulation of periodic endometrial responses during decidualization and pregnancy in rats. Physiol Behav. 1997; 62(4):893–897.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    McDonald SE, Henderson TA, Gomez-Sanchez CE, Critchley HO, Mason JI. 11Beta-hydroxysteroid dehydrogenases in human endometrium. Mol Cell Endocrinol. 2006;248(1–2):72–78.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Vienonen A, Miettinen S, Blauer M, et al. Expression of nuclear receptors and cofactors in human endometrium and myometrium. J Soc Gynecol Investig. 2004;11(2):104–112.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Henderson TA, Saunders PT, Moffett-King A, Groome NP, Critchley HO. Steroid receptor expression in uterine natural killer cells. J Clin Endocrinol Metab. 2003;88(1):440–449.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Bamberger AM, Milde-Langosch K, Loning T, Bamberger CM. The glucocorticoid receptor is specifically expressed in the stromal compartment of the human endometrium. J Clin Endocrinol Metab. 2001;86(10):5071–5074.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Loda M, Cukor B, Tam SW, et al. Increased proteasome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nat Med. 1997;3(2): 231–234.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Matsuoka S, Edwards MC, Bai C, et al. p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev. 1995;9(6):650–662.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Hirama T, Koeffler HP. Role of the cyclin-dependent kinase inhibitors in the development of cancer. Blood. 1995;86(3):841–854.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999;13(12): 1501–1512.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Zavitz KH, Zipursky SL. Controlling cell proliferation in differentiating tissues: genetic analysis of negative regulators of G1–>S-phase progression. Curr Opin Cell Biol. 1997;9(6):773–781.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Lee MH, Reynisdottir I, Massague J. Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev. 1995;9(6):639–649.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Shiozawa T, Horiuchi A, Kato K, et al. Up-regulation of p27Kip1 by progestins is involved in the growth suppression of the normal and malignant human endometrial glandular cells. Endocrinology. 2001;142(10):4182–4188.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Schor E, da Silva ID, Sato H, Baracat EC, Girao MJ, de Freitas V. P27Kip1 is down-regulated in the endometrium of women with endometriosis. Fertil Steril. 2009;91(3):682–686.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Kawaguchi M, Watanabe J, Hamano M, et al. Medroxyprogesterone acetate stimulates cdk inhibitors, p21 and p27, in endometrial carcinoma cells transfected with progesterone receptor-B cDNA. Eur J Gynaecol Oncol. 2006;27(1):33–38.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Lahav-Baratz S, Ben-Izhak O, Sabo E, et al. Decreased level of the cell cycle regulator p27 and increased level of its ubiquitin ligase Skp2 in endometrial carcinoma but not in normal secretory or in hyperstimulated endometrium. Mol Hum Reprod. 2004; 10(8):567–572.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Oshita T, Shigemasa K, Nagai N, Ohama K. p27, cyclin E, and CDK2 expression in normal and cancerous endometrium. Int J Oncol. 2002;21(4):737–743.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Shiozawa T, Nikaido T, Nakayama K, Lu X, Fujii S. Involvement of cyclin-dependent kinase inhibitor p27Kip1 in growth inhibition of endometrium in the secretory phase and of hyperplastic endometrium treated with progesterone. Mol Hum Reprod. 1998;4(9): 899–905.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Bamberger AM, Riethdorf L, Milde-Langosch K, et al. Strongly reduced expression of the cell cycle inhibitor p27 in endometrial neoplasia. Virchows Arch. 1999;434(5):423–428.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Fero ML, Rivkin M, Tasch M, et al. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice. Cell. 1996;85(5):733–744.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Nakayama K, Ishida N, Shirane M, et al. Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell. 1996;85(5):707–720.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Kiyokawa H, Kineman RD, Manova-Todorova KO, et al. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27(Kip1). Cell. 1996;85(5):721–732.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Takano M, Lu Z, Goto T, et al. Transcriptional cross talk between the forkhead transcription factor forkhead box O1A and the progesterone receptor coordinates cell cycle regulation and differentiation in human endometrial stromal cells. Mol Endocrinol. 2007; 21(10):2334–2349.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Kim ST, Lee SK, Gye MC. The expression of Cdk inhibitors p27kip1 and p57kip2 in mouse placenta and human choriocarcinoma JEG-3 cells. Placenta. 2005;26(1):73–80.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Qian K, Chen H, Wei Y, Hu J, Zhu G. Differentiation of endometrial stromal cells in vitro: down-regulation of suppression of the cell cycle inhibitor p57 by HOXA10? Mol Hum Reprod. 2005;11(4):245–251.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Zhang P, Liegeois NJ, Wong C, et al. Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith-Wiedemann syndrome. Nature. 1997;387(6629):151–158.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Yan Y, Frisen J, Lee MH, Massague J, Barbacid M. Ablation of the CDK inhibitor p57Kip2 results in increased apoptosis and delayed differentiation during mouse development. Genes Dev. 1997;11(8):973–983.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Takahashi K, Kobayashi T, Kanayama N. p57(Kip2) regulates the proper development of labyrinthine and spongiotrophoblasts. Mol Hum Reprod. 2000;6(11):1019–1025.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Noyes RW, Hertig AT, Rock J. Dating the endometrial biopsy. Am J Obstet Gynecol. 1975;122(2):262–263.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Kim ST, Marquard K, Stephens S, Louden E, Allsworth J, Moley KH. Adiponectin and adiponectin receptors in the mouse preimplantation embryo and uterus. Hum Reprod. 2011;26(1):82–95.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Punyadeera C, Dunselman G, Marbaix E, et al. Triphasic pattern in the ex vivo response of human proliferative phase endometrium to oestrogens. J Steroid Biochem Mol Biol. 2004;92(3):175–185.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Weihua Z, Saji S, Makinen S, et al. Estrogen receptor (ER) beta, a modulator of ERalpha in the uterus. Proc Natl Acad Sci U S A. 2000;97(11):5936–5941.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Tibbetts TA, Mendoza-Meneses M, O’Malley BW, Conneely OM. Mutual and intercompartmental regulation of estrogen receptor and progesterone receptor expression in the mouse uterus. Biol Reprod. 1998;59(5):1143–1152.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Mertens HJ, Heineman MJ, Theunissen PH, de Jong FH, Evers JL. Androgen, estrogen and progesterone receptor expression in the human uterus during the menstrual cycle. Eur J Obstet Gynecol Reprod Biol. 2001;98(1):58–65.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Slayden OD, Rubin JS, Lacey DL, Brenner RM. Effects of keratinocyte growth factor in the endometrium of rhesus macaques during the luteal-follicular transition. J Clin Endocrinol Metab. 2000;85(1):275–285.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Critchley HO, Tong S, Cameron ST, Drudy TA, Kelly RW, Baird DT. Regulation of bcl-2 gene family members in human endometrium by antiprogestin administration in vivo. J Reprod Fertil. 1999;115(2):389–395.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Otsuki Y, Misaki O, Sugimoto O, Ito Y, Tsujimoto Y, Akao Y. Cyclic bcl-2 gene expression in human uterine endometrium during menstrual cycle. Lancet. 1994;344(8914):28–29.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Chang TS, Kim MJ, Ryoo K, et al. p57KIP2 modulates stress-activated signaling by inhibiting c-Jun NH2-terminal kinase/stress-activated protein Kinase. J Biol Chem. 2003;278(48): 48092–48098.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Li Q, Zhang M, Kumar S, et al. Identification and implantation stage-specific expression of an interferon-alpha-regulated gene in human and rat endometrium. Endocrinology. 2001;142(6): 2390–2400.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Burney RO, Talbi S, Hamilton AE, et al. Gene expression analysis of endometrium reveals progesterone resistance and candidate susceptibility genes in women with endometriosis. Endocrinology. 2007;148(8):3814–3826.CrossRefGoogle Scholar
  54. 54.
    Mertens HJ, Heineman MJ, Evers JL. The expression of apoptosis-related proteins Bcl-2 and Ki67 in endometrium of ovulatory menstrual cycles. Gynecol Obstet Invest. 2002;53(4):224–230.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Kalantaridou SN, Makrigiannakis A, Zoumakis E, Chrousos GP. Stress and the female reproductive system. J Reprod Immunol. 2004;62(1–2):61–68.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Lecce G, Meduri G, Ancelin M, Bergeron C, Perrot-Applanat M. Presence of estrogen receptor beta in the human endometrium through the cycle: expression in glandular, stromal, and vascular cells. J Clin Endocrinol Metab. 2001;86(3):1379–1386.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Mastorakos G, Scopa CD, Kao LC, et al. Presence of immunoreactive corticotropin-releasing hormone in human endometrium. J Clin Endocrinol Metab. 1996;81(3):1046–1050.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Makrigiannakis A, Zoumakis E, Kalantaridou S, et al. Corticotropin-releasing hormone promotes blastocyst implantation and early maternal tolerance. Nat Immunol. 2001;2(11):1018–1024.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Samuelsson MK, Pazirandeh A, Davani B, Okret S. p57Kip2, a glucocorticoid-induced inhibitor of cell cycle progression in HeLa cells. Mol Endocrinol. 1999;13(11):1811–1822.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Alheim K, Corness J, Samuelsson MK, et al. Identification of a functional glucocorticoid response element in the promoter of the cyclin-dependent kinase inhibitor p57Kip2. J Mol Endocrinol. 2003;30(3):359–368.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Szapary D, Huang Y, Simons SS, Jr. Opposing effects of corepressor and coactivators in determining the dose-response curve of agonists, and residual agonist activity of antagonists, for glucocorticoid receptor-regulated gene expression. Mol Endocrinol. 1999;13(12):2108–2121.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Wang Q, Blackford JA Jr, Song LN, Huang Y, Cho S, Simons SS, Jr. Equilibrium interactions of corepressors and coactivators with agonist and antagonist complexes of glucocorticoid receptors. Mol Endocrinol. 2004;18(6):1376–1395.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Wang D, Wang Q, Awasthi S, Simons SS, Jr. Amino-terminal domain of TIF2 is involved in competing for corepressor binding to glucocorticoid and progesterone receptors. Biochemistry. 2007; 46(27):8036–8049.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Society for Reproductive Investigation 2012

Authors and Affiliations

  1. 1.Renal Division, Department of Internal MedicineWashington University School of MedicineSt. LouisUSA
  2. 2.Department of Obstetrics and GynecologyKonyang University HospitalDaejeonKorea
  3. 3.Department of Life Science, College of Natural SciencesHanyang UniversitySeoulKorea

Personalised recommendations