Advertisement

Reproductive Sciences

, Volume 19, Issue 1, pp 70–80 | Cite as

Aqueous Fenugreek Seed Extract Ameliorates Adriamycin-Induced Cytotoxicity and Testicular Alterations in Albino Rats

  • Saber A. SakrEmail author
  • Salama M. El-shenawy
  • Ahmed M. Al-Shabka
Original Articles

Abstract

The present work studied the effect of fenugreek seed extracts on cytotoxicity and testicular damage induced by adriamycin (ADR) in albino rats. Administrating animals with ADR caused significant increase in the percentage of chromosomal aberrations, decreased the mitotic index, and induced DNA damage in bone marrow. Testes of ADR-treated rats showed many histopathological alterations and the number of sperm head abnormalities increased. Moreover, the concentration of malondialdehyde (MDA) increased and the activity of catalase (CAT) and superoxide dismutase (SOD) decreased in the testis. Treating animals with ADR and aqueous seed extracts of fenugreek led to an improvement in the cytogenetic effect and testicular alterations induced by ADR. Lipid peroxidation was reduced and the activities of CAT and SOD were increased. In conclusion, the results indicated that fenugreek seeds ameliorated the cytotoxicity and testicular alterations induced by ADR in albino rats and this may be mediated by its potent antioxidant effects.

Keywords

adriamycin fenugreek chromosomal aberrations testis antioxidants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lebrecht D, Geist A, Ketelsen UP, Haberstroh J, Setzer B, Walker UA. Dexrazoxane prevents doxorubicin-induced long-term cardiotoxicity and protects myocardial mitochondria from genetic and functional lesions in rats. Br J Pharmacol. 2007;151(6):771–778.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Tallaj JA, Franco V, Rayburn BK, et al. Response of doxorubicin-induced cardiomyopathy to the current management strategy of heart failure. J Heart Lung Transplant. 2005;24(12):2196–2201.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Da Cunha MF, Meistrich ML, Ried HL. Active sperm production after cancer chemotherapy with doxorubicin. J Urol. 1983;130(5): 927–930.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Suter L, Bobadilla M, Koch E, Bechter R. Flow cytometric evaluation of the effects of doxorubicin on rat spermatogenesis. Reprod Toxicol. 1997;11(4):521–531.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5..
    Howell SJ, Shalet SM. Spermatogenesis after cancer treatment: damage and recovery. J Natl Cancer Inst Monogr. 2005;(34): 12–17.CrossRefGoogle Scholar
  6. 6.
    Ateşşahin A, Karahan I, Türk G, Gür S, Yilmaz S, Ceribaşi AO. Protective role of lycopene on cisplatin induced changes in sperm characteristics, testicular damage and oxidative stress in rats. Reprod Toxicol. 2006;21(1):42–47.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Yeh YC, Lai HC, Ting CT, Lee WL, Wang KY, Liu TJ. Protection by doxycycline against doxorubicin-induced oxidative stress and apoptosis in mouse. Biochem Pharmacol. 2007;74(7):969–980.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Shinoda K, Mitsumori K, Yasuhara K, et al. Doxorubicin induces male germ cell apoptosis in rats. Arch Toxicol. 1999; 73(4–5):274–281.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Tavares DC, Cecchi AO, Antunes LM, Takahashi CS. Protective effects of the amino acid glutamine and of ascorbic acid against chromosomal damage induced by doxorubicin in mammalian cells. Teratog Carcinog Mutagen. 1998;18(4):153–161.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Antunes LMG, Takahashi CS. Olive oil protects against chromosomal aberrations induced by doxorubicin in Wistar rat bone marrow cells. Genet Mol Biol. 1999;22(2):225–227.CrossRefGoogle Scholar
  11. 11.
    Quiles J, Huertas J, Battino M, Mataix J, Ramirez-Tortosa M. Antioxidant nutrients and adriamycin toxicity. Toxicology. 2002;180(1):79–95.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Powis G. Free radical formation by antitumor quinones. Free Radic Biol Med. 1989;6(1):63–101.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13..
    Ramos KS, Melchert RB, Chacon E, Acosta D Jr. Toxic response of the heart and vascular systems. In: CD, Klaassen, ed. Casarett and Doull’s Toxicology: Basic Science of Poisons. New York, NY: McGraw-Hill; 2001:597–651.Google Scholar
  14. 14.
    Kaviarasan S, Naik GH, Gangabhagirathi R, Anuradha CV, Priyadarsini KI. In vitro studies on antiradical and antioxidant activities of fenugreek (Trigonella foenum graecum) seeds. Food Chem. 2007;103(1):31–37.CrossRefGoogle Scholar
  15. 15.
    Xue WL, Li XS, Zhang J, Liu YH, Wang ZL, Zhang RJ. Effect of Trigonella foenum-graecum (fenugreek) extract on blood glucose, blood lipid and hemorheological properties in streptozotocin-induced diabetic rats. Asia Pac J Clin Nutr. 2007; 16(suppl 1):422–426.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Abou El-Soud N, Khalil M, Hussein J, Oraby F, Farrag A. Antidiabetic effect of fenugreek alkaloid extract in streptozotocin-induced hyperglycemic rats. J Appl Sci Res. 2007;3(10): 1073–1083.Google Scholar
  17. 17.
    Billaud C. Composition, nutritional value and physiological properties of fenugreek. Adrian J Sci des Ailments. 2001;21(1):3–26.Google Scholar
  18. 18.
    Wang GR, Tang WZ, Yao QQ, Zhong H, Liu YJ. New flavonoids with 2BS cell proliferation promoting effect from the seeds of Trigonella foenum-graecum L. J Nat Med. 2010; 64(3):358–361.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Thirunavukkarasu V, Anuradha CV, Viswanathan P. Protective effect of fenugreek (Trigonella foenum graecum) seeds in experimental ethanol toxicity. Phytother Res. 2003;17(7): 737–743.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20..
    National Research Council. Guide for Use and Care of Laboratory Animals, Publication No. Washington, DC: NIH; 1985: 85–23.Google Scholar
  21. 21.
    Preston RJ, Dean BJ, Galloway S, Holden H, McFee AF, Shelby M. Mammalian in vivo cytogenetic assays. Analysis of chromosome aberrations in bone marrow cells. Mutat Res. 1987;189(2): 157–165.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Wlodek D, Banath J, Olive PL. Comparison between pulsed-field and constant-field gel electrophoresis for measurement of DNA double-strand breaks in irradiated Chinese hamster ovary cells. Int J Radiat Biol. 1991;60(5):779–790.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Aljanabi SM, Martines I. Universal and rapid salt extraction of high quality genomic DNA for PCR based technique. Nucleic Acids Res. 1997;25(22):4692–4693.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxidation in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979; 95(2):351–358.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Rest Richard F, Spitznagel JK. Subcellular distribution of superoxide dismutase in human neutrophils. Influence of myeloperoxide on the measurement of superoxide dismutase activity. Biochem J. 1977;166(2):145–153.PubMedCentralGoogle Scholar
  26. 26.
    Aebi H, Wyss SR, Scherze B, Skvaril F. Heterogenecity of erythrocyte catalase II. Isolation and characterization of normal and variant erythrocyte catalase and their subunit. Enzyme. 1974;17(5):307–318.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Yapar K, Yalçin E, Oruç E, Cavuşoğlu K. Protective role of grape seed extract against doxorubicin-induced cardiotoxicity and genotoxicity in albino mice. J Med Food. 2010;13(4): 917–925.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Tavares DC, Lira WM, Santini CB, Takahashi CS, Bastos JK. Effects of propolis crude hydroalcoholic extract on chromosomal aberrations induced by doxorubicin in rats. Planta Med. 2007; 73(15):1531–1536.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Leite-Silva C, Gusmão CLS, Takahashi, Catarina S. Genotoxic and antigenotoxic effects of Fucus vesiculosus extract on cultured human lymphocytes using the chromosome aberration and Comet assays. Genet Mol Biol. 2007;30(1):105–111.CrossRefGoogle Scholar
  30. 30.
    Khan F, Sherwani AF, Afzal M. Chromosomal aberration and micronucleus studies of two topoisomerase (II) targeting anthra-cyclines. J Environ Biol. 2009;30(3):409–412.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Dimanche-Boitrel MT, Meurette O, Rebillard A, Lacour S. Role of early plasma membrane events in chemotherapy-induced cell death. Drug Resist Updat. 2005;8(1–2):5–14.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Bagchi D, Bagchi M, Hassoun EA, Kelly J, Stohs SJ. Adriamycin-induced hepatic and myocardial lipid peroxidation and DNA damage, and enhanced excretion of urinary lipid metabolites in rats. Toxicology. 1995;95(1–3):1–9.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Meistrich ML, Goldstein LS, Wyrobek AJ. Long-term infertility and dominant lethal mutations in male mice treated with adriamycin. Mutat Res. 1985;152(1):53–65.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Adachi T, Nishimura T, Imahie H, Yamamura T. Collaborative work to evaluate toxicity an male reproductive organs by repeated dose studies in rats. Testicular toxicity in male rats given adriamycin for tub or four week. J Toxicol Sci. 2000;25: 95–101.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Ward JA, Bardin CW, Knight M, Robinson J, Gunsalus G, Morris ID. Delayed effects of doxorubicin on spermatogenesis and endocrine function in rats. Reprod Toxicol. 1988;2(2): 117–126.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Hou M, Chrysis D, Nurmio M, et al. Doxorubicin induces apoptosis in germ line stem cells in the immature rat testis and amifostine cannot protect against this cytotoxicity. Cancer Res. 2005; 65(21):9999–10005.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Yeh YC, Liu TJ, Wang LC, et al. A standardized extract of Ginkgo biloba suppresses doxorubicin-induced oxidative stress and p53-mediated mitochondrial apoptosis in rat testes. Br J Pharmacol. 2009;156(1):48–61.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Fang J, Nakamura H, Iyer AK. Tumor-targeted induction of oxystress for cancer therapy. J Drug Target. 2007; 15(7–8):475–486.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Ashikawa K, Shishodia S, Fokt I, Priebe W, Aggarwal BB. Evidence that activation of nuclear factor-κB is essential for the cytotoxic effects of doxorubicin and its analogues. Biol Pharm. 2004; 67(2):353–364.Google Scholar
  40. 40.
    Belguith-Hadriche O, Bouaziz M, Jamoussi K, El Feki A, Sayadi S, Makni-AyediI F. Lipid-lowering and antioxidant effects of an ethyl acetate extract of fenugreek seeds in high-cholesterol-fed rats. J Agric Food Chem. 2010;58(4):2116–2122.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Kim NY, Song EJ, Kwon DY, Kim HP, Heo MY. Antioxidant and antigenotoxic activities of Korean fermented soybean Food. Chem Toxicol. 2008;46(3):1184–1189.CrossRefGoogle Scholar
  42. 42.
    Plewa MJ, Berhow MA, Vaughn SF, et al. Isolating antigenotoxic components and cancer cell growth suppressors from agricultural by-products. Mutat Res. 2001;(480–481):109–120.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Jagetia GC, Venkatesha VA, Reddy TK. Naringin, a citrus flavonone, protects against radiation-induced chromosome damage in mouse bone marrow. Mutagenesis. 2003;18(4):337–343.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Cariño-Cortés R, Alvarez-González I, Martino-Roaro L, Madrigal-Bujaidar E. Effect of naringin on the DNA damage induced by daunorubicin in mouse hepatocytes and cardiocytes. Biol Pharm Bull. 2010;33(4):697–701.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Vrinda B, Uma Devi P. Radiation protection of human lymphocyte chromosomes in vitro by orientin and vicenin. Mutat Res. 2001;498(1–2):39–46.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Khalil EAM. Biochemical and histopathological studies on the influence of aqueous extract of fenugreek seed (Trigonella foenum graecum) on alloxan diabetic male rats. Egypt. J Hospital Med. 2004;15:83–94.Google Scholar
  47. 47.
    Hamden K, Jaouadi B, Carreau S, et al. Potential protective effect on key steroidogenesis and metabolic enzymes and sperm abnormalities by fenugreek steroids in testis and epididymis of surviving diabetic rats. Arch Physiol Biochem. 2010;116(10): 146–155.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Hamden K, Masmoudi H, Carreau S, Elfeki A. Immunomodulatory, beta-cell, and neuroprotective actions of fenugreek oil from alloxan-induced diabetes. Immunopharmacol Immunotoxicol. 2010;32(3):437–445.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Gupta R, Nair S. Antioxidant flavonoids in Indian diet. South Asian. J Prev Cardiol. 1999;3:83–94.Google Scholar
  50. 50.
    Ravikumar P, Anuradha CV. Effect of fenugreek seeds on blood lipid peroxidation and antioxidants in diabetic rats. Phytother Res. 1999;13(3):197–201.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Choudhary D, Chandra D, Choudhary S, Kale RK. Modulation of glyoxalase, glutathione S-transferase and antioxidant enzymes in the liver, spleen and erythrocytes of mice by dietary administration of fenugreek seeds. Food Chem Toxicol. 2001;39(9): 989–997.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Sushma N, Devasena T. Aqueous extract of Trigonella foenum graecum (fenugreek) prevents cypermethrin-induced hepatotoxicity and nephrotoxicity. Hum Exp Toxicol. 2010;29(4):311–319.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Society for Reproductive Investigation 2012

Authors and Affiliations

  • Saber A. Sakr
    • 1
    Email author
  • Salama M. El-shenawy
    • 2
  • Ahmed M. Al-Shabka
    • 1
  1. 1.Department of Zoology, Faculty of ScienceMenoufia UniversityShibin el-KomEgypt
  2. 2.Laboratory Department, Teaching HospitalMenoufia UniversityShebin el-KomEgypt

Personalised recommendations