Advertisement

Reproductive Sciences

, Volume 18, Issue 12, pp 1267–1272 | Cite as

Polymorphisms in Folate-Related Enzyme Genes in Idiopathic Infertile Brazilian Men

  • Marcello M. Gava
  • Erika A. Kayaki
  • Bianca Bianco
  • Juliana S. Teles
  • Denise M. Christofolini
  • Antonio C. L. Pompeo
  • Sidney Glina
  • Caio P. BarbosaEmail author
Original Articles

Abstract

The aim of the study was to analyze the distribution of the methylenetetrahydrofolate reductase (MTHFR), methionine synthase reductase (MTRR), and methionine synthase (MTR) polymorphisms in idiopathic infertile Brazilian men and fertile men. Case–control study comprising 133 idiopathic infertile Brazilian men with nonobstructive azoospermia ([NOA] n = 55) or severe oligozoospermia ([SO] n = 78) and 173 fertile men as controls. MTHFR C677T, A1298C, and G1793A; MTRR A66G; and MTR A2756G polymorphisms were studied by quantitative polymerase chain reaction (qPCR). The results were analyzed statistically and a P value <.05 was considered significant. Single-marker analysis revealed a significant association among MTHFR C677T polymorphism and both NOA group (P = .018) and SO group (P < .001). Considering the MTHFR A1298C, MTHFR G1793A, and MTRR A66G polymorphisms, no difference was found between NOA group and SO group. Regarding the MTR A2756G polymorphism, a significant difference was found between NOA and controls, P = .017. However, statistical analysis revealed no association between SO group and controls. Combined genotypes of 3 MTHFR polymorphisms did not identify a haplotype associated with idiopathic infertility. The combinatory analysis of the 3 polymorphisms MTHFR, MTRR, and MTR did not show difference between cases and controls. The findings suggest the MTHFR C677T and MTR A2756G polymorphisms could be an important genetic factor predisposing to idiopathic infertility in Brazilian men.

Keywords

male infertility folate homocysteine MTHFR gene MTRR gene MTR gene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O’Flynn O’Brien KL, Varghese AC, Agarwal A. The genetic causes of male factor infertility: a review. Fertil Steril. 2010;93(1):1-12.Google Scholar
  2. 2.
    Ferlin A, Arredi B, Foresta C. Genetic causes of male infertility. Reprod Toxicol. 2006;22:133-141.Google Scholar
  3. 3.
    Jacques PF, Bostom AG, Wilson PW, Rich S, Rosenberg IH, Selhub J. Determinants of plasma total homocysteine concentration in the Framingham Offspring cohort. Am J Clin Nutr. 2001;73(3):613-621.Google Scholar
  4. 4.
    Lucock M. Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol Genet Metab. 2000;71(1-2):121-138.Google Scholar
  5. 5.
    Chen Z, Karaplis AC, Ackerman SL, et al. Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocyste-inemia and decreased methylation capacity, with neuropathology and aortic lipid deposition. Hum Mol Genet. 2001;10(5):433-443.Google Scholar
  6. 6.
    Agarwal A, Prabakaran S, Allamaneni SS. Relationship between oxidative stress, varicocele and infertility: a meta-analysis. Reprod Biomed Online. 2006;12(5):630-633.Google Scholar
  7. 7.
    Frosst P, Blom HJ, Milos R, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995;10(1): 111-113.Google Scholar
  8. 8.
    Forges T, Monnier-Barbarino P, Alberto JM, Gueant-Rodriguez RM, Daval JL, Gueant JL. Impact of folate and homocysteine metabolism on human reproductive health. Hum Reprod Update. 2007;13(3):225-238.Google Scholar
  9. 9.
    Gava MM, de Oliveira Chagas E, Bianco B, et al. Methylenetetrahydrofolate reductase polymorphisms are related to male infertility in Brazilian men. Genet Test Mol Biomarkers. 2011; 15(3):153-157.Google Scholar
  10. 10.
    van der Put NM, Gabreëls F, Stevens EM, et al. A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet. 1998;62(5):1044-1051.Google Scholar
  11. 11.
    Fowler B. Homocysteine: overview of biochemistry, molecular biology, and role in disease processes. Semin Vasc Med. 2005;5(2):77-86.Google Scholar
  12. 12.
    Toffoli G, De Mattia E. Pharmacogenetic relevance of MTHFR polymorphisms. Pharmacogenomics. 2008;9(9):1195-1206.Google Scholar
  13. 13.
    Wu W, Shen O, Qin Y, et al. Idiopathic male infertility is strongly associated with aberrant promoter methylation of methylenetetrahydrofolate reductase (MTHFR). PLoS One. 2010;5(11):e13884.PubMedCentralGoogle Scholar
  14. 14.
    World Health Organization. WHO Laboratory Manual for the Examination of Human Semen and Semen-Cervical Mucus Interaction. 14th ed. Cambridge: Cambridge University Press; 1999.Google Scholar
  15. 15.
    Lahiri DK, Numberger JI. A rapid non-enzymatic method for preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res. 1991;19(19):5444.Google Scholar
  16. 16.
    Purcell S, Cherny SS, Sham PC. Genetic power calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics. 2003;19(1):149-150.Google Scholar
  17. 17.
    Lee HC, Jeong YM, Lee SH, et al. Association study of four polymorphisms in three folate-related enzyme genes with nonobstructive male infertility. Hum Reprod. 2006;21(12):3162-3170.Google Scholar
  18. 18.
    Ravel C, Chantot-Bastaraud S, Chalmey C, et al. Lack of association between genetic polymorphisms in enzymes associated with folate metabolism and unexplained reduced sperm counts. PLoS One. 2009;4(8):e6540.Google Scholar
  19. 19.
    Montjean D, Benkhalifa M, Dessolle L, et al. Polymorphisms in MTHFR and MTRR genes associated with blood plasma homocysteine concentration and sperm counts. Fertil Steril. 2011;95(2):635-640.Google Scholar
  20. 20.
    Safarinejad MR, Shafiei N, Safarinejad S. Relationship between genetic polymorphisms of methylenetetrahydrofolate reductase (C677T, A1298C, and G1793A) as risk factors for idiopathic male infertility. Reprod Sci. 2011;18(3):304-315.Google Scholar
  21. 21.
    Chan D, Cushnie DW, Neaga OR, Lawrance AK, Rozen R, Trasler JM. Strain-specific defects in testicular development and sperm epigenetic patterns in 5,10-methylenetetrahydrofolate reductase-deficient mice. Endocrinology. 2010;151(7):3363-3373.Google Scholar
  22. 22.
    de Lamirande E, Gagnon C. Human sperm hyperactivation in whole semen and its association with low superoxide scavenging capacity in seminal plasma. Fertil Steril. 1993;59(6):1291-1295.Google Scholar
  23. 23.
    Makker K, Agarwal A, Sharma R. Oxidative stress & male infertility. Indian J Med Res. 2009; 129(4):357-367.Google Scholar
  24. 24.
    Abd-Elmoaty MA, Saleh R, Sharma R, Agarwal A. Increased levels of oxidants and reduced antioxidants in semen of infertile men with varicocele. Fertil Steril. 2010;94(4):1531-1534.Google Scholar
  25. 25.
    Rousseaux J, Rousseaux-Prevost R. Molecular localization of free thiols in human sperm chromatin. Biol Reprod. 1995;52(5):1066-1072.Google Scholar
  26. 26.
    Aitken RJ, Harkiss D, Buckingham DW. Analysis of lipid peroxidation mechanisms in human spermatozoa. Mol Reprod Dev. 1993;35:302-315.Google Scholar
  27. 27.
    Aitken RJ, De Iuliis GN. Origins and consequences of DNA damage in male germ cells. Reprod Biomed Online. 2007;14(6):727-733.Google Scholar
  28. 28.
    Shamsi MB, Venkatesh S, Kumar R, et al. Antioxidant levels in blood and seminal plasma and their impact on sperm parameters in infertile men. Indian J Biochem Biophys. 2010;47(1):38-43.Google Scholar
  29. 29.
    Neagu VR, García BM, Rodríguez AM, et al. Determination of glutathione peroxidase and superoxide dismutase activities in canine seminal plasma and its relation with sperm quality and lipid peroxidation post thaw. Theriogenology. 2011;75(1):10-16.Google Scholar
  30. 30.
    Desai N, Sabanegh E Jr, Kim T, Agarwal A. Free radical theory of aging: implications in male infertility. Urology. 2010;75(1):14-19.Google Scholar
  31. 31.
    Aléssio AC, Höehr NF, Siqueira LH, et al. Polymorphism C776G in the transcobalamin II gene and homocysteine, folate and vitamin B12 concentrations. Association with MTHFR C677T and A1298C and MTRR A66G polymorphisms in healthy children. Thromb Res. 2007;119(5):571-577.Google Scholar
  32. 32.
    Tavares EF, Vieira-Filho JP, Andriolo A, et al. Serum total homocysteine levels and the prevalence of folic acid deficiency and C677T mutation at the MTHFR gene in an indigenous population of Amazonia: the relationship of homocysteine with other cardiovascular risk factors. Ethn Dis. 2004;14(1):49-56.Google Scholar

Copyright information

© Society for Reproductive Investigation 2011

Authors and Affiliations

  • Marcello M. Gava
    • 1
    • 2
  • Erika A. Kayaki
    • 1
  • Bianca Bianco
    • 1
  • Juliana S. Teles
    • 1
  • Denise M. Christofolini
    • 1
  • Antonio C. L. Pompeo
    • 2
  • Sidney Glina
    • 2
  • Caio P. Barbosa
    • 1
    Email author
  1. 1.Department of Gynecology and Obstetrics, Division of Human Reproduction and GeneticsFaculdade de Medicina do ABCSanto AndréBrazil
  2. 2.Department of Surgery, Division of UrologyFaculdade de Medicina do ABCSanto AndréBrazil

Personalised recommendations