Reproductive Sciences

, Volume 18, Issue 12, pp 1211–1221 | Cite as

Differential Effects of Low-Dose Endotoxin on the Cerebral Circulation During Pregnancy

  • Marilyn J. CipollaEmail author
  • Emily M. Houston
  • Richard P. Kraig
  • Elizabeth A. Bonney
Original Articles


It is well-known that the pregnant state is associated with increased sensitivity to endotoxin in renal and uterine circulations; however, the effects on the cerebral circulation are not known. Intravenous infusion of low-dose lipopolysaccharide ([LPS]; 1.5 μg/kg) to pregnant Wistar rats on day 15 of pregnancy caused significantly decreased myogenic tone of posterior cerebral arteries on day 20, which was not seen in similarly treated nonpregnant rats. Pregnancy alone was associated with a 2-to 4-fold increase in inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ) messenger RNA (mRNA) in cerebral arteries compared to nonpregnant, suggesting that the cerebral circulation is in a state of inflammation during pregnancy. After LPS treatment, cerebral arteries from pregnant animals had increased iNOS and TNF-α compared to LPS-treated nonpregnant animals, but decreased interleukin 10 (IL-10) and IFN-γ. These results demonstrate that pregnancy enhances sensitivity to the effects of LPS in the cerebral circulation, which may be due to an enhanced inflammatory state during pregnancy.


lipopolysaccharide posterior cerebral artery inflammation pregnancy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Apitz K. A study on the generalized Shwartzman phenomenon. J Immunol. 1935;29(3):255–266.Google Scholar
  2. 2.
    Beller FK, Schmidt EH, Holzgreve W, Hauss J. Septicemia during pregnancy: a study in different species of experimental animals. Am J Obstet Gynecol. 1985;151(4):967–975.Google Scholar
  3. 3.
    Faas MM, Schuiling GA, Bailer JFW, Bakker WW. Glomerular inflammation in pregnant rats after infusion of low dose endotoxin: an immunohistological study in experimental pre-eclampsia. Am J Pathol. 1995;147(5):1510–1518.Google Scholar
  4. 4.
    Bakker WW, Timmerman W, Poelstra K, Schuiling GA. Endotoxin induced intra-placental thrombotic tendency and decreased vascular ADPase in the pregnant rat. Placenta. 1992; 13(3):281–290.Google Scholar
  5. 5.
    Beller FK, Schoendorf T. Augmentation of endotoxin-induced fibrin deposits by pregnancy and estrogen-progesterone treatment. Gynecol Invest. 1972;3(5):176–183.Google Scholar
  6. 6.
    Bowen JM, Chamley L, Keelan JA, Mitchell MD. Cytokines of the placenta and extra-placental membranes: roles and regulation during human pregnancy and parturition. Placenta. 2002;23(4):257–273.Google Scholar
  7. 7.
    Luppi P. How immune mechanisms are affected by pregnancy. Vaccine. 2003;21(24):3352–3357.Google Scholar
  8. 8.
    Challis JR, Lockwood CJ, Myatt L, Norman JE, Strauss JF 3rd, Petraglia F. Inflammation and pregnancy. Reprod Sci. 2009;16(2):206–215.Google Scholar
  9. 9.
    Bizargity P, Del Rio R, Phillippe M, Teuscher C, Bonney EA. Resistance to lipopolysaccharide-induced preterm delivery mediated by regulatory T cell function in mice. Biol Reprod. 2009;80(5):874–881.Google Scholar
  10. 10.
    Conrad KP, Miles TM, Benyo DF. Circulating levels of immunoreactive cytokines in women with preeclampsia. Am J Reprod Immunol. 1998;40(2):102–111.Google Scholar
  11. 11.
    Medhi B, Prakash A, Avti PK, Chakrabarti A, Khanduja KL. Intestinal inflammation and seizure susceptibility: understanding the role of tumour necrosis factor-alpha in a rat model. J Pharm Pharmacol. 2009;61(10):1359–1364.Google Scholar
  12. 12.
    Riazi K, Galic MA, Kuzmiski JB, Ho W, Sharkey KA, Pittman QJ. Microglial activation and TNFalpha production mediate altered CNS excitability following peripheral inflammation. Proc Natl Acad Sci USA. 2008;105(44):17151–17156.Google Scholar
  13. 13.
    Faas MM, Schuiling GA, Linton EA, Sargent IL, Redman CW. Activation of peripheral leukocytes in rat pregnancy and experimental preeclampsia. Am J Obstet Gynecol. 2000;182(2):351–357.Google Scholar
  14. 14.
    Kofler S, Nickel T, Weis M. Role of cytokines in cardiovascular diseases: a focus on endothelial responses to inflammation. Clin Sci (Lond). 2005;108(3):205–213.Google Scholar
  15. 15.
    Zhang C. The role of inflammatory cytokines in endothelial dysfunction. Basic Res Cardiol. 2008;103(5):398–406.Google Scholar
  16. 16.
    Baumann H, Gauldie J. The acute phase response. Immunol Today. 1994;15(2):74–80.Google Scholar
  17. 17.
    Konsman JP, Drukarch B, Van Dam AM. (Peri)vascular production and action of pro-inflammatory cytokines in brain pathology. Clin Sci (Lond). 2007;112(l):l-25.Google Scholar
  18. 18.
    Cipolla MJ, DeLance N, Vitullo L. Pregnancy prevents hypertensive remodeling of cerebral arteries: a potential role in the development of eclampsia. Hypertension. 2006;47(3):619–626.Google Scholar
  19. 19.
    Cipolla MJ, Smith J, Kohlmeyer MM, Godfrey JA. SKCa and IKCa Channels, myogenic tone, and vasodilator responses in middle cerebral arteries and parenchymal arterioles: effect of ischemia and reperfusion. Stroke. 2009;40(4):1451–1457.Google Scholar
  20. 20.
    Yuan JS, Wang D, Stewart CN Jr. Statistical methods for efficiency adjusted real-time PCR quantification. Biotechnol J. 2008;3(1):112–123.Google Scholar
  21. 21.
    Faraci FM, Heistad DD. Regulation of large cerebral arteries and cerebral microvascular pressure. Circ Res. 1990;66(1):8–17.Google Scholar
  22. 22.
    Amburgey OA, Reeves SA, Bernstein IM, Cipolla MJ. Resistance artery adaptation to pregnancy counteracts the vasoconstricting influence of plasma from normal pregnant women. Reprod Sci. 2010;17(1):29–39.Google Scholar
  23. 23.
    Cipolla MJ, Bullinger LV. Reactivity of brain parenchymal arterioles after ischemia and reperfusion. Microcirculation. 2008;15(6):495–501.Google Scholar
  24. 24.
    Faas MM, Schuiling GA, Baller JF, Visscher CA, Bakker WW. A new animal model for human preeclampsia: ultra-low-dose endotoxin infusion in pregnant rats. Am J Obstet Gynecol. 1994;171(1):158–164.Google Scholar
  25. 25.
    Li H, Förstermann U. Nitric oxide in the pathogenesis of vascular disease. J Pathol. 2000;190(3):244–254.Google Scholar
  26. 26.
    Szabó C, Salzman AL, Ischiropoulos H. Endotoxin triggers the expression of an inducible isoform of nitric oxide synthase and the formation of peroxynitrite in the rat aorta in vivo. FEBS Lett. 1995;363(3):235–238.Google Scholar
  27. 27.
    Gunnett CA, Chu Y, Heistad DD, Loihl A, Faraci FM. Vascular effects of LPS in mice deficient in expression of the gene for inducible nitric oxide synthase. Am J Physiol. 1998;275(2 Pt 2):H416–H421.Google Scholar
  28. 28.
    Sakawi Y, Tarpey M, Chen YF, et al. Evaluation of low-dose endotoxin administration during pregnancy as a model of preeclampsia. Anesthesiology. 2000;93(6):1446–1455.Google Scholar
  29. 29.
    de Vries JE. Immunosuppressive and anti-inflammatory properties of interleukin 10. Ann Med. 1995;27(5):537–541.Google Scholar
  30. 30.
    Gunnett CA, Lund DD, Faraci FM, Heistad DD. Vascular interleukin-10 protects against LPS-induced vasomotor dysfunction. Am J Physiol. 2005;289(2):H624–H630.Google Scholar
  31. 31.
    Gunnett CA, Lund DD, McDowell AK, Faraci FM, Heistad DD. Mechanisms of inducible nitric oxide synthase-mediated vascular dysfunction. Arterioscler Thromb Vasc Biol. 2005;25(8):1617–1622.Google Scholar
  32. 32.
    Gunnett CA, Lund DD, Chu Y, Brooks RM 2nd, Faraci FM, Heistad DD. NO-dependent vasorelaxation is impaired after gene transfer of inducible NO-synthase. Arterioscler Thromb Vasc Biol. 2001;21(8):1281–1287.Google Scholar
  33. 33.
    Griffiths MJD, Liu S, Curzen NP, Messent M, Evans TW. In vivo treatment with endotoxin induces nitric oxide synthase in rat main pulmonary artery. Am J Physiol. 1995;268(3 Pt 1):L509–L518.Google Scholar
  34. 34.
    Griffiths MJD, Messent M, MacAllister RJ, Evans TW. Amino-guanidine selectively inhibits inducible nitric oxide synthase. Br J Pharmacol. 1993;110(3):963–968.Google Scholar
  35. 35.
    Gunnett CA, Berg DJ, Faraci FM, Feuerstein G. Vascular effects of lipopolysaccharide are enhanced in interleukin-10-deficient mice. Stroke. 1999;30(10):2191–2195.Google Scholar
  36. 36.
    Szabo C, Southam GJ, Thiemermann C. Beneficial effects and improved survival in rodent models of septic shock with S-methylisothiourea sulfate, a potent and selective inhibitor of inducible nitric oxide synthase. Proc Natl Acad Sci USA. 1994;91(26):12472–12476.Google Scholar
  37. 37.
    Goldman M, Stordeur P. Interleukin-10 as an anti-stress cytokine. Eur Cytokine Netw. 1997;8(3):301–302.Google Scholar
  38. 38.
    Berg DJ, Kuehn R, Rajewsky K, et al. Interleukin-10 is a central regulator of the response to LPS in murine models of endotoxic shock and the Shwartzman reaction but not endotoxin tolerance. J Clin Invest. 1995;96(5):2339–2347.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Raisanen-Sokolowski A, Mottram PL, Glysing-Jensen T, Satoskar A, Russell ME. Heart transplant in interferon-gamma, interleukin 4, and interleukin 10 knockout mice: recipient environment alters graft rejection. J Clin Invest. 1997;100(10):2449–2456.Google Scholar
  40. 40.
    Rennick DM, Fort MM, Davidson NJ. Studies with IL-10-/- mice: an overview. J Leukocyte Biol. 1997;61(4):389–396.Google Scholar
  41. 40.
    Becherel PA, Le Goff L, Ouaaz F, et al. Interleukin-10 inhibits IgE-mediated nitric oxide synthase induction and cytokine synthesis in normal human keratinocytes. Eur J Pharmacol. 1995;25(10):2992–2995.Google Scholar

Copyright information

© Society for Reproductive Investigation 2011

Authors and Affiliations

  • Marilyn J. Cipolla
    • 1
    • 2
    • 3
    Email author
  • Emily M. Houston
    • 1
  • Richard P. Kraig
    • 4
  • Elizabeth A. Bonney
    • 2
  1. 1.Department of NeurologyUniversity of Vermont College of MedicineBurlingtonUSA
  2. 2.Department of Obstetrics, Gynecology & Reproductive SciencesUniversity of Vermont College of MedicineBurlingtonUSA
  3. 3.Department of PharmacologyUniversity of Vermont College of MedicineBurlingtonUSA
  4. 4.Department of NeurologyUniversity of ChicagoChicagoUSA

Personalised recommendations