Reproductive Sciences

, Volume 18, Issue 12, pp 1193–1201 | Cite as

Ceftriaxone Preconditioning Confers Neuroprotection in Neonatal Rats Through Glutamate Transporter 1 Upregulation

  • Kazuya Mimura
  • Takuji TomimatsuEmail author
  • Kenji Minato
  • Otgonbaatar Jugder
  • Yukiko Kinugasa-Taniguchi
  • Takeshi Kanagawa
  • Masatoshi Nozaki
  • Itaru Yanagihara
  • Tadashi Kimura
Original Articles



This study investigated the hypothesis that ceftriaxone preconditioning ameliorates brain damage in neonatal animals through glutamate transporter 1 (GLT-1) upregulation.

Study design

Sprague Dawley rats were pretreated with ceftriaxone, erythromycin, minocycline, or saline for 5 consecutive days starting from postnatal day 2 (P2), and GLT-1/glutamate-aspartate transporter (GLAST) messenger RNA (mRNA) and protein levels were examined in the P7 brains. After ceftriaxone or saline preconditioning, the P7 rats underwent hypoxic-ischemic (H-I) procedure or sham operation. One week after the procedure (P14), hematoxylin-eosin staining, microtubule-associated protein 2 (MAP-2) immunostaining, and transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) assay were used to examine neuronal damage and possible neurotoxicity.


Repeated ceftriaxone injections significantly increased GLT-1 mRNA and protein levels but not GLAST. Following such treatment and H-I procedure, the MAP-2-positive area increased and TUNEL-positive cells decreased. Conclusion: Antenatal ceftriaxone may help to provide neuroprotection in the immature brain and become a new prophylactic strategy to reduce neonatal encephalopathy in clinical perinatal medicine.


ceftriaxone glutamate transporter 1 (GLT-1) preconditioning neuroprotection neonatal rat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Volpe JJ. Perinatal brain injury: from pathogenesis to neuroprotection. Ment Retard Dev Disabil Res Rev. 2001;7(1):56–64.Google Scholar
  2. 2.
    McLean C, Ferriero D. Mechanisms of hypoxic-ischemic injury in the term infant. Semin Perinatol. 2004;28(6):425–432.Google Scholar
  3. 3.
    Shigeri Y, Seal RP, Shimamoto K. Molecular pharmacology of glutamate transporters, EAATs and VGLUTs. Brain Res Rev. 2004;45(3):250–265.Google Scholar
  4. 4.
    Choi DW. Glutamate neurotoxicity and diseases of the nervous system. Neuron. 1988;1(8):623–634.Google Scholar
  5. 5.
    Danbolt NC. Glutamate uptake. Prog Neurobiol. 2001;65(1):1–105.Google Scholar
  6. 6.
    Tanaka K, Watase K, Manabe T, et al. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science. 1997;276(5319):1699–1702.Google Scholar
  7. 7.
    Rothstein JD, Dykes-Hoberg M, Pardo CA, et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron. 1996;16(3):675–686.Google Scholar
  8. 8.
    Rothstein JD, Jin L, Dykes-Hoberg M, Kuncl RW. Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. Proc Natl Acad Sci U S A. 1993;90(14):6591–6595.Google Scholar
  9. 9.
    McDonald JW, Silverstein FS, Johnston MV. Neurotoxicity of N-methyl-D-aspartate is markedly enhanced in developing rat central nervous system. Brain Res. 1988;459(1):200–203.Google Scholar
  10. 10.
    Tremblay E, Roisin MP, Represa A, Charriaut-Marlangue C, Ben-Ari Y. Transient increased density of NMDA binding sites in the developing rat hippocampus. Brain Res. 1988;461(2):393–396.Google Scholar
  11. 11.
    McDonald JW, Johnston MV, Young AB. Ontogeny of the receptors comprising the NMDA receptor complex. Soc Neurosci Abstr. 1989;15(3):198.Google Scholar
  12. 12.
    Represa A, Tremblay E, Ben-Ari Y. Transient increase of NMDA-binding sites in human hippocampus during development. Neurosci Lett. 1989;99(1–2):61–66.Google Scholar
  13. 13.
    Furuta A, Rothstein JD, Martin LJ. Glutamate transporter protein subtypes are expressed differentially during rat CNS development. J Neurosci. 1997;17(21):8363–8375.Google Scholar
  14. 14.
    Kugler P, Schleyer V. Developmental expression of glutamate transporters and glutamate dehydrogenase in astrocytes of the postnatal rat hippocampus. Hippocampus. 2004;14(8):975–985.PubMedGoogle Scholar
  15. 15.
    McDonald JW, Silverstein FS, Johnston MV. MK-801 protects the neonatal brain from hypoxic-ischemic damage. Eur J Pharmacol. 1987;140(3):359–361.Google Scholar
  16. 16.
    Olney JW, Ikonomidou C, Mosinger JL, Frierdich G. MK-801 prevents hypobaric-ischemic neuronal degeneration in infant rat brain. J Neurosci. 1989;9(5):1701–1704.Google Scholar
  17. 17.
    Ikonomidou C, Bosch F, Miksa M, et al. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science. 1999;283(5398):70–74.Google Scholar
  18. 18.
    Stefovska V, Czuczwar M, Smitka M, et al. Sedative and anticonvulsant drugs suppress postnatal neurogenesis. Ann Neurol. 2008;64(4):434–445.Google Scholar
  19. 19.
    Rothstein JD, Patel S, Regan MR, et al. β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature. 2005;433(7021):73–77.Google Scholar
  20. 20.
    Kon C, Soon-Tae L, Dong-In S, et al. Pharmacological induction of ischemic tolerance by glutamate transporter-1 (EAAT2) upregulation. Stroke. 2007;38(1):177–182.Google Scholar
  21. 21.
    Verma R, Mishra V, Sasmal D, Raghubir R. Pharmacological evaluation of glutamate transporter 1 (GLT-1) mediated neuroprotection following cerebral ischemia/reperfusion injury. Eur J Pharmacol. 2010;638(1–3):65–71.Google Scholar
  22. 22.
    Hagberg H, Bona E, Gilland E, Puka-Sundvall M. Hypoxia-ischemia model in the 7-day-old rat: possibilities and shortcomings. Acta Paediatr Suppl. 1997;442:85–88.Google Scholar
  23. 23.
    Brambrink AM, Koerner IP, Diehl K, Strobel G, Noppens R, Kempski O. The antibiotic erythromycin induces tolerance against transient global cerebral ischemia in rats (pharmacologic preconditioning). Anesthesiology. 2006;104(6):1208–1215.Google Scholar
  24. 24.
    Fox C, Dingman A, Derugin N, et al. Minocycline confers early but transient protection in the immature brain following focal cerebral ischemia-reperfusion. J Cereb Blood Flow Metab. 2005;25(9):1138–1149.Google Scholar
  25. 25.
    Rice JE, Vannucci RC, Brierley JB. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol. 1981;9(2):131–141.Google Scholar
  26. 26.
    Kitagawa K, Matsumoto M, Ninobe M, et al. Microtubule-associated protein 2 as a sensitive marker for cerebral ischemic damage-immunohistochemical investigation of dendritic damage. Neuroscience. 1989;31(2):401–411.Google Scholar
  27. 27.
    Tomimatsu T, Fukuda H, Kanagawa T, Mu J, Kanzaki T, Murata Y. Effects of hyperthermia on hypoxic-ischemic brain damage in the immature rat: its influence on caspase-3–like protease. Am J Obstet Gynecol. 2003;188(3):768–773.Google Scholar
  28. 28.
    Nizzardo M, Nardini M, Ronchi D, et al. Beta-lactam antibiotic offers neuroprotection in a spinal muscular atrophy model by multiple mechanisms. Exp Neurol 2011;229(2):214–225.Google Scholar
  29. 29.
    Goodman LS, Hardman JG, Limbird LE, et al. Goodman & Gilman’s The Pharmacological Basis of Therapeutics. New York, NY: McGraw-Hill; 2001.Google Scholar
  30. 30.
    Crider KS, Cleves MA, Reefhuis J, et al. Antibacterial medication use during pregnancy and risk of birth defects: National Birth Defects Prevention Study. Arch Pediatr Adolesc Med. 2009;163(ll):978–985.Google Scholar
  31. 31.
    Nau R, Prange HW, Muth P, et al. Passage of cefotaxime and ceftriaxone into cerebrospinal fluid of patients with uninflamed meninges. Antimicrob Agents Chemother. 1993;37(7):1518–1524.Google Scholar
  32. 32.
    Kafetzis DA, Brater DC, Fanourgakis JE, Voyatzis J, Georgakopoulos P. Ceftriaxone distribution between maternal blood and fetal blood and tissues at parturition and between blood and milk postpartum. Antimicrob Agents Chemother. 1983;23(6):870–873.Google Scholar
  33. 33.
    Sidhu S, Tuor UI, Del Bingio MR. Nuclear condensation and fragmentation following cerebral hypoxia-ischemia occurs more frequently in immature than older rats. Neurosci Lett. 1997;223(2):129–132.Google Scholar
  34. 34.
    Hu BR, Liu CL, Ouyang Y, Blomgren K, Siesjö BK. Involvement of caspase-3 in cell death after hypoxic-ischemic declines during brain maturation. J Cereb Blood Flow Metab. 2000;20(9):1294–1300.Google Scholar
  35. 35.
    Fukuda H, Tomimatsu T, Watanabe N, et al. Post-ischemic hypothermia blocks caspase-3 activation in the newborn rat brain after hypoxia-ischemia. Brain Res. 2001;910(1–2):187–191.Google Scholar
  36. 36.
    Ikeda T. Stem cells and neonatal brain injury. Cell Tissue Res. 2008;331(1):263–269.Google Scholar
  37. 37.
    Brooks WJ, Sarkisian M, Yang Y, Hori A, Helmers SL, Mikati M. Effect of chronic administration of NMDA antagonists on synaptic development. Synapse. 1997;26(2):104–113.Google Scholar
  38. 38.
    Tanaka K. Antibiotics rescue neurons from glutamate attack. Trends Mol Med. 2005;11(6):259–262.Google Scholar
  39. 39.
    Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74(5):1124–1136.Google Scholar
  40. 40.
    Hagberg H, Dammann O, Mallard C, Leviton A. Preconditioning and the developing brain. Semin Perinatol. 2004;28(6):389–395.Google Scholar
  41. 41.
    Gidday JM, Fitzgibbons JC, Shah AR, Park TS. Neuroprotection from ischemic brain injury by hypoxic preconditioning in the neonatal rat. Neurosci Lett. 1994;168(1–2):221–224.Google Scholar
  42. 42.
    Ikeda T, Ikenoue T, Xia XY, Xia YX. Important role of 72-kd heat shock protein expression in the endothelial cell in acquisition of hypoxic-ischemic tolerance in the immature rat. Am J Obstet Gynecol. 2000;182(2):380–386.Google Scholar
  43. 43.
    Gustavsson M, Anderson MF, Mallard C, Hagberg H. Hypoxic preconditioning confers long-term reduction of brain injury and improvement of neurological ability in immature rats. Pediatr Res. 2005;57(2):305–309.Google Scholar
  44. 44.
    Salter MG, Fern R. NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature. 2005;438(7071):1167–1171.Google Scholar
  45. 45.
    Back SA, Han BH, Luo NL, et al. Selective vulnerability of late oligodendrocyte progenitors to hypoxia-ischemia. J Neurosci. 2002;22(2):455–463.Google Scholar
  46. 46.
    Follett PL, Deng W, Dai W, et al. Glutamate receptor-mediated oligodendrocyte toxicity in periventricular leukomalacia: a protective role for topiramate. J Neurosci. 2004; 24(18):4412–4420.Google Scholar

Copyright information

© Society for Reproductive Investigation 2011

Authors and Affiliations

  • Kazuya Mimura
    • 1
    • 2
  • Takuji Tomimatsu
    • 1
    Email author
  • Kenji Minato
    • 1
  • Otgonbaatar Jugder
    • 1
  • Yukiko Kinugasa-Taniguchi
    • 1
  • Takeshi Kanagawa
    • 1
  • Masatoshi Nozaki
    • 2
  • Itaru Yanagihara
    • 2
  • Tadashi Kimura
    • 1
  1. 1.Department of Obstetrics and GynecologyOsaka University Graduate School of MedicineSuita, OsakaJapan
  2. 2.Department of Developmental MedicineOsaka Medical Center and Research Institute for Maternal and Child HealthIzumi, OsakaJapan

Personalised recommendations