Advertisement

Reproductive Sciences

, Volume 18, Issue 11, pp 1103–1110 | Cite as

Prenatal Nicotine Increases Matrix Metalloproteinase 2 (MMP-2) Expression in Fetal Guinea Pig Hearts

  • Loren P. ThompsonEmail author
  • Hongshan Liu
  • LaShauna Evans
  • Jessica A. Mong
Original Articles

Abstract

This study tested the hypothesis that maternal nicotine ingestion increases matrix metalloproteinase (MMP) expression in fetal hearts, which is mediated by the generation of reactive oxygen species. Timed pregnant guinea pigs were administered either water alone, nicotine (200 μg/mL), N-acetylcysteine (NAC), or nicotine plus NAC in their drinking water for 10 days at 52-day gestation (term = 65 days). Near-term (62 days), anesthetized fetuses were extracted, hearts were excised, and left cardiac ventricles snap frozen for analysis of MMP-2/-9/-13 protein and activity levels. Interstitial collagens were identified by Picrosirius red stain to assess changes in the extracellular matrix. Prenatal nicotine increased active MMP-2 forms and interstitial collagen but had no effect on either pro- or active MMP-9 or MMP-13 forms. In the presence of nicotine, NAC decreased active MMP-2 protein levels and reversed the nicotine-induced increase in collagen staining. We conclude that prenatal nicotine alters MMP-2 expression in fetal hearts that may be mediated by reactive oxygen species generation.

Keywords

collagen cardiac remodeling reactive oxygen species N-acetylcysteine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Substance Abuse and Mental Health Services Administration. Results from the 2004 National Survey on Drug Use and Health: National Findings, Tobacco Use (PDF-1.17MB). Rockville, MD: Substance Abuse and Mental Health Services Administration, Office of Applied Studies; 2005.Google Scholar
  2. 2.
    Lambers DS, Clark KE. The maternal and fetal physiologic effects of nicotine. Semin Perinatol. 1996;20(2):115–126.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Slotkin TA. If nicotine is a developmental neurotoxicant in animal studies, dare we recommend nicotine replacement therapy in pregnant women and adolescents? Neurotoxicol Teratol. 2008;30(1):1–19.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Duncan JR, Randall LL, Belliveaur RA, et al. The effect of maternal smoking and drinking during pregnancy upon (3)H-nicotine receptor brainstem binding in infants dying of the sudden infant death syndrome: initial observations in a high risk population. Brain Pathol. 2008;18(1):21–31.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Slotkin TA. Prenatal exposure to nicotine: what can we learn from animal models? In: Zagon IS, Slotkin TA, eds. Maternal Substance Abuse and The Developing Nervous System. San Diego, CA: Academic Press; 1992:97–124.Google Scholar
  6. 6.
    Changeux J-P. Nicotine addiction and nicotinic receptors: lessons from genetically modified mice. Nature Rev Neurosci. 2010;11(6):389–401.Google Scholar
  7. 7.
    Hecht SS. Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nature Rev Cancer. 2003;3(10):733–744.Google Scholar
  8. 8.
    Egleton RD, Brown KC, Dasgupta P. Nicotine acetylcholine receptors in cancer: multiple roles in proliferation and inhibition of apoptosis. Trends Pharmacol Sci. 2008;29(3):151–158.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Haass M, Kubler W. Nicotine and sympathetic neurotransmission. Cardiovasc Drugs Ther. 1996;10(6):657–665.Google Scholar
  10. 10.
    Hanna ST. Nicotine effect on cardiovascular system and ion channels. J Cardiovasc Pharmacol. 2006;47(3):348–358.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Wang H, Shi H, Zhang L, et al. Nicotine is a potent blocker of the cardiac A-type K+ channels Circulation. 2000;102(10): 1165–1171.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Grilli M, Parodi M, Raiteri M, Marchi M. Chronic nicotine differentially affects the function of nicotinic receptor subtypes regulating neurotransmitter release J Neurochem. 2005;93(5): 1353–1360.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Jacobs I, Anderson DJ, Surowy CS, Puttfarcken PS. Differential regulate of nicotine receptor-mediated neurotransmitter release following chronic (-)-nicotine administration. Neuropharmacology. 2002;43(5):847–856.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Levin ED, Lawrence S, Petro A, Horton K, Seidler FJ, Slotkin TA. Increased nicotine self-administration following prenatal exposure in female rats. Pharmacol Biochem Behav. 2006;85(3):669–674.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Maritz GS, Morley CJ, Harding R. Early developmental origins of impaired lung structure and function. Early Hum Dev. 2005;81(9):763–771.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Xiao D, Huang X, Lawrence J, Yang S, Zhang L. Fetal and neonatal nicotine exposure differentially regulates vascular contractility in adult male and female offspring J Pharm Exp Ther. 2007;320(2): 654–661.Google Scholar
  17. 17.
    Zhang S, Day I, Ye S. Nicotine induced changes in gene expression by human coronary artery endothelial cells. Atherosclerosis. 2001;154(2):277–283.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Lawrence J, Xiao D, Xue Q, Rejali M, Yang S, Zhang L. Prenatal nicotine exposure increases heart susceptibility to ischemia/reperfusion injury in adult offspring. J Pharmacol Exp Ther. 2008;324(1):331–341.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Lawrence J, Chen M, Xiong F, et al. Foetal nicotine exposure causes PKC1 gene repression by promoter methylation in rat hearts. Cardiovasc Res. 2011;89(1):89–97.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Barros DM, Galhardi FG, Ferreira JLR, et al. The benefits and drawbacks of nicotine exposure in the cortex and hippocampus of old rats. Neuro Toxicol. 2007;28(3):562–568.Google Scholar
  21. 21.
    Bruin JE, Petre MA, Lehman MA, et al. Maternal nicotine exposure increases oxidative stress in the offspring Free Radic Biol Med. 2008;44(11): 1919–1925.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Cormier A, Morin C, Zini R, Tillement J-P, Lagrue G. In vitro effects of nicotine on mitochondrial respiration and superoxide anion generation. Brain Res. 2001;900(1):72–79.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Fang Q, Sun H, Arrick DM, Mayhan WG. Inhibition of NADPH oxidase improves impaired reactivity of pial arterioles during chronic exposure to nicotine. J Appl Physiol. 2006;100(2):631–636.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Jaimes EA, Tian R-X, Raij L. Nicotine: the link between cigarette smoking and the progression of renal injury? Am J Physiol Heart Circ Physiol. 2007;292(1):H76–H82.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Deschamps AM, Spinale FG. Pathways of matrix metalloproteinase induction in heart failure: bioactive molecules and transcriptional regulation. Cardiovasc Res. 2006;69(3):666–676.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Rutschow S, Li J, Schultheiss H-P, Pauschinger M. Myocardial proteases and matrix remodeling in inflammatory heart disease. Cardiovasc Res. 2006;69(3):646–656.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Chow AK, Cena J, Schulz R. Acute actions and novel targets of matrix metalloproteinase in the heart and vasculature. Br J Pharmacol. 2007;152(2):189–205.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Benowitz NL, Gourlay SG. Cardiovascular toxicity of nicotine: implications for nicotine replacement therapy. J Am Coll Cardiol. 1997;29(7):1422–1431.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Jauniaux E, Glubis B, Acharaya G, Thiry P, Rodieck C. Maternal tobacco exposure and cotinine levels in fetal fluids in the first half of pregnancy. Obstet Gynecol. 1999;93(1):25–29.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Beloosesky R, Gayle DA, Amidi F, et al. N-acetyl-cysteine suppresses amniotic fluid and placenta inflammatory cytokine responses to lipopolysaccaride in rats. Am J Obstet Gynecol. 2006;194(1):268–273.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Demiralay R, Gursan N, Erdem H. The effects of erdosteine, N-acetylcysteine and vitamin E on nicotine-induced apoptosis of cardiac cells. J Appl Toxicol. 2007;27(3):47–54.Google Scholar
  32. 32.
    Langley SC, Kelly FJ. N-acetylcysteine ameliorates hyperoxic lung injury in the preterm guinea pig. Biochem Pharmacol. 1993;45(4):841–846.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Ferrari R, Ceconi C, Curello S, et al. Oxygen free radicals and myocardial damage: protective role of thiol-containing agents. Am J Med. 1991;91(3C):95S–105S.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Wilkes JM, Clark LE, Herrera JL. Acetaminophen overdose in pregnancy. South Med J. 2005;98(11):1118–1122.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Oh C, Dong Y, Liu H, Thompson LP. Intrauterine hypoxia upregulates proinflammatory cytokines and matrix metalloproteinases in fetal guinea pig hearts. Am J Obstet Gynecol. 2008;199(1):78.e1–78.e6. Epub 2008.Google Scholar
  36. 36.
    Junqueira LC, Bignolas G, Brentani RR. Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue. Histochem J. 1979;11(4):446–455.Google Scholar
  37. 37.
    Nagase H, Woessner JF. Matrix metalloproteinases. J Biol Chem. 1999;274(31):21491–21494.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Nian M, Lee P, Khaper N, Liu P. Inflammatory cytokines and postmyocardial infarction remodeling Circ Res. 2004;94(12): 1543–1553.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Lopez B, Gonzalez A, Diez J. Role of matrix metalloproteinase in hypertension-associated cardiac fibrosis. Curr Opin Nephrol Hypertens. 2004;13(2):197–204.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Clubb FJ, Bishop SP. Formation of binucleated myocardial cells in the neonatal rat. An index for growth hypertrophy. Lab Invest. 1984;50(5):571–577.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Baykan A, Narin N, Narin F, Akgun H, Yavasacn S, Saraymen R. The protective effect of melatonin on nicotine-induced myocardial injury in newborn rats whose mothers received nicotine. Anadolu Kardiyol Derg. 2008;8(4):243–248.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Li YY, McTiernan CF, Feldman AM. Interplay of matrix metalloproteinases, tissue inhibitors of metalloproteinases and their regulators in cardiac matrix remodeling. Cardiovasc Res. 2000;46(2):214–224.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Newman MB, Arendash GW, Shytle RD, Bickford PC, Tighe T, Sanberg PR. Nicotine’s oxidative and antioxidant properties in CNS. Life Sci. 2002;71(24):2807–2820.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Zhou X, Sheng Y, Yang R, Kong X. Nicotine promotes cardio-myocyte apoptosis via oxidative stress and altered apoptosis-related gene expression. Cardiology. 2010;115(4):243–250.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Owasoyo JO, Jay M, Gillespie MN. Impact of nicotine on myocardial neutrophil uptake. Toxicol Appl Pharmacol. 1998;92(1):86–94.Google Scholar
  46. 46.
    Akki A, Zhang M, Murdoch C, Brewer A, Shah AM. NADPH oxidase signaling and cardiac myocyte function. J Mol Cell Cardiol. 2009;47(1):15–22.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Yildiz D, Liu YS, Ercal N, Armstrong DW. Comparison of pure nicotine- and smokeless tobacco extract-induced toxicities an oxidative stress. Arch Environ Contam Toxicol. 1999;37(4):434–439.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Ra H-J, Parks WC. Control of matrix metalloproteinase catalytic activity. Matrix Biol. 2007;26(8):587–596.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Luck W, Nau H, Hansen R, Steldinger R. Extent of nicotine and cotinine transfer to the human fetus, placenta and amniotic fluid of smoking mothers Dev Pharmacol Ther. 1985;8(6): 384–395.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Thompson L, Dong Y, Evans L. Chronic hypoxia increases inducible NOS-derived nitric oxide in fetal guinea pig hearts. Pediatr Res. 2009;65(2):188–192.PubMedPubMedCentralGoogle Scholar

Copyright information

© Society for Reproductive Investigation 2011

Authors and Affiliations

  • Loren P. Thompson
    • 1
    Email author
  • Hongshan Liu
    • 1
  • LaShauna Evans
    • 2
  • Jessica A. Mong
    • 3
  1. 1.Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of MarylandBaltimoreUSA
  2. 2.Department of PhysiologyUniversity of MarylandBaltimoreUSA
  3. 3.Department of Pharmacology and Experimental TherapeuticsUniversity of MarylandBaltimoreUSA

Personalised recommendations